Advertisement

On cascade decays of squarks at the LHC in NLO QCD

  • W. Hollik
  • J. M. LindertEmail author
  • D. Pagani
Regular Article - Theoretical Physics

Abstract

In this paper we present an analysis at NLO QCD of the contribution from squark-squark production to the experimental signature \(2j+l^{+}l^{-}+ \displaystyle{\not}E_T (+X)\) with opposite-sign same flavor leptons, taking into account decays and experimental cuts. We consider the case in which one squark decays directly into the lightest neutralino \(\tilde{\chi}^{0} _{1}\) and the other one into the second lightest neutralino and subsequently into \(l^{+}l^{-} \tilde{\chi}^{0} _{1}\) via an intermediate slepton. On the one hand we study the effects of the NLO corrections on invariant mass distributions which can be used for future parameter determination. On the other hand we analyze the impact on predictions for cut-and-count searches using the given experimental signature.

Keywords

Invariant Mass Minimal Supersymmetric Standard Model Decay Chain Invariant Mass Distribution Light Neutralino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the Research Executive Agency of the European Union under the Grant Agreement PITN-GA-2010-264564 (LHCPhenonet). We acknowledge use of the computing resources at the Rechenzentrum Garching.

References

  1. 1.
    S. Chatrchyan et al., Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    G. Aad et al., Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    S. Chatrchyan et al., Phys. Lett. B 718, 815–840 (2013). arXiv:1206.3949 [hep-ex] ADSCrossRefGoogle Scholar
  4. 4.
    S. Chatrchyan et al. arXiv:1212.6961 [hep-ex]
  5. 5.
    S. Chatrchyan et al. arXiv:1301.2175 [hep-ex]
  6. 6.
    G. Aad et al., Eur. Phys. J. C 71, 1647 (2011). arXiv:1103.6208 [hep-ex] ADSCrossRefGoogle Scholar
  7. 7.
    G. Aad et al. arXiv:1208.0949 [hep-ex]
  8. 8.
    N. Arkani-Hamed, G.L. Kane, J. Thaler, L.-T. Wang, J. High Energy Phys. 0608, 070 (2006). arXiv:hep-ph/0512190 MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    N. Bornhauser, M. Drees, Phys. Rev. D 86, 015025 (2012). arXiv:1205.6080 [hep-ph] ADSCrossRefGoogle Scholar
  10. 10.
    J. Hubisz, J. Lykken, M. Pierini, M. Spiropulu, Phys. Rev. D 78, 075008 (2008). arXiv:0805.2398 [hep-ph] ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Barr, C.G. Lester, J. Phys. G 37, 123001 (2010). arXiv:1004.2732 [hep-ph] ADSCrossRefGoogle Scholar
  12. 12.
    P. Falgari, C. Schwinn, C. Wever, J. High Energy Phys. 06, 052 (2012). arXiv:1202.2260 [hep-ph] ADSCrossRefGoogle Scholar
  13. 13.
    I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist, W. Yao, Phys. Rev. D 55, 5520–5540 (1997). arXiv:hep-ph/9610544 ADSCrossRefGoogle Scholar
  14. 14.
    H. Bachacou, I. Hinchliffe, F.E. Paige, Phys. Rev. D 62, 015009 (2000). arXiv:hep-ph/9907518 ADSCrossRefGoogle Scholar
  15. 15.
    B. Allanach, C. Lester, M.A. Parker, B. Webber, J. High Energy Phys. 0009, 004 (2000). arXiv:hep-ph/0007009 ADSCrossRefGoogle Scholar
  16. 16.
    G. Weiglein et al., Phys. Rep. 426, 47–358 (2006). arXiv:hep-ph/0410364 CrossRefGoogle Scholar
  17. 17.
    B.K. Gjelsten, D.J. Miller, P. Osland, J. High Energy Phys. 0412, 003 (2004). arXiv:hep-ph/0410303 ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Miller, P. Osland, A.R. Raklev, J. High Energy Phys. 0603, 034 (2006). arXiv:hep-ph/0510356 ADSCrossRefGoogle Scholar
  19. 19.
    C.G. Lester, Phys. Lett. B 655, 39–44 (2007). arXiv:hep-ph/0603171 ADSCrossRefGoogle Scholar
  20. 20.
    R. Horsky, M. Kramer, A. Muck, P.M. Zerwas, Phys. Rev. D 78, 035004 (2008). arXiv:0803.2603 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    M. Bisset, R. Lu, N. Kersting, J. High Energy Phys. 1105, 095 (2011). arXiv:0806.2492 [hep-ph] Google Scholar
  22. 22.
    D. Costanzo, D.R. Tovey, J. High Energy Phys. 0904, 084 (2009). arXiv:0902.2331 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    G. Polesello, D.R. Tovey, J. High Energy Phys. 1003, 030 (2010). arXiv:0910.0174 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    K.T. Matchev, M. Park, Phys. Rev. Lett. 107, 061801 (2011). arXiv:0910.1584 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    K.T. Matchev, F. Moortgat, L. Pape, M. Park, J. High Energy Phys. 0908, 104 (2009). arXiv:0906.2417 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    H.-C. Cheng, J.F. Gunion, Z. Han, B. McElrath, Phys. Rev. D 80, 035020 (2009). arXiv:0905.1344 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    L. Edelhauser, W. Porod, R.K. Singh, J. High Energy Phys. 1008, 053 (2010). arXiv:1005.3720 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    K. Agashe, D. Kim, M. Toharia, D.G. Walker, Phys. Rev. D 82, 015007 (2010). arXiv:1003.0899 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    M.M. Nojiri, K. Sakurai, Phys. Rev. D 82, 115026 (2010). arXiv:1008.1813 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    A. Barr, T. Khoo, P. Konar, K. Kong, C. Lester et al., Phys. Rev. D 84, 095031 (2011). arXiv:1105.2977 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    C.-Y. Chen, A. Freitas, J. High Energy Phys. 1201, 124 (2012). arXiv:1110.6192 [hep-ph] ADSGoogle Scholar
  32. 32.
    K. Choi, D. Guadagnoli, C.B. Park, J. High Energy Phys. 1111, 117 (2011). arXiv:1109.2201 [hep-ph] ADSCrossRefGoogle Scholar
  33. 33.
    B.K. Gjelsten, D.J. Miller, P. Osland, A.R. Raklev, AIP Conf. Proc. 903, 257–260 (2007). arXiv:hep-ph/0611259 ADSCrossRefGoogle Scholar
  34. 34.
    A. Barr, Phys. Lett. B 596, 205–212 (2004). arXiv:hep-ph/0405052 ADSCrossRefGoogle Scholar
  35. 35.
    J.M. Smillie, B.R. Webber, J. High Energy Phys. 10, 069 (2005). arXiv:hep-ph/0507170 ADSCrossRefGoogle Scholar
  36. 36.
    C. Athanasiou, C.G. Lester, J.M. Smillie, B.R. Webber, J. High Energy Phys. 0608, 055 (2006). arXiv:hep-ph/0605286 ADSCrossRefGoogle Scholar
  37. 37.
    M. Battaglia, A.K. Datta, A. De Roeck, K. Kong, K.T. Matchev, eConf C 050318, 0302 (2005). arXiv:hep-ph/0507284 Google Scholar
  38. 38.
    A. Datta, K. Kong, K.T. Matchev, Phys. Rev. D 72, 096006 (2005). arXiv:hep-ph/0509246 ADSCrossRefGoogle Scholar
  39. 39.
    L.-T. Wang, I. Yavin, J. High Energy Phys. 0704, 032 (2007). arXiv:hep-ph/0605296 ADSCrossRefGoogle Scholar
  40. 40.
    S. Choi, K. Hagiwara, H.-U. Martyn, K. Mawatari, P. Zerwas, Eur. Phys. J. C 51, 753–774 (2007). arXiv:hep-ph/0612301 MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    C. Kilic, L.-T. Wang, I. Yavin, J. High Energy Phys. 0705, 052 (2007). arXiv:hep-ph/0703085 ADSCrossRefGoogle Scholar
  42. 42.
    L.-T. Wang, I. Yavin, Int. J. Mod. Phys. A 23, 4647–4668 (2008). arXiv:0802.2726 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    S. Choi, M. Drees, A. Freitas, P. Zerwas, Phys. Rev. D 78, 095007 (2008). arXiv:0808.2410 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    M. Burns, K. Kong, K.T. Matchev, M. Park, J. High Energy Phys. 0810, 081 (2008). arXiv:0808.2472 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    O. Gedalia, S.J. Lee, G. Perez, Phys. Rev. D 80, 035012 (2009). arXiv:0901.4438 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    W. Ehrenfeld, A. Freitas, A. Landwehr, D. Wyler, J. High Energy Phys. 0907, 056 (2009). arXiv:0904.1293 [hep-ph] ADSCrossRefGoogle Scholar
  47. 47.
    N. Srimanobhas, B. Asavapibhop, J. Phys. G 38, 075001 (2011) ADSCrossRefGoogle Scholar
  48. 48.
    H.K. Dreiner, M. Kramer, J.M. Lindert, B. O’Leary, J. High Energy Phys. 04, 109 (2010). arXiv:1003.2648 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    W. Hollik, J.M. Lindert, D. Pagani, J. High Energy Phys. 1303, 139 (2013) ADSCrossRefGoogle Scholar
  50. 50.
    R. Boughezal, M. Schulze. arXiv:1212.0898 [hep-ph]
  51. 51.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 74, 2905–2908 (1995). arXiv:hep-ph/9412272 ADSCrossRefGoogle Scholar
  52. 52.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Z. Phys. C 69, 163–166 (1995). arXiv:hep-ph/9505416 Google Scholar
  53. 53.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51–103 (1997). arXiv:hep-ph/9610490 ADSGoogle Scholar
  54. 54.
    W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B 515, 3–14 (1998). arXiv:hep-ph/9710451 ADSCrossRefGoogle Scholar
  55. 55.
    U. Langenfeld, S.-O. Moch, Phys. Lett. B 675, 210–221 (2009). arXiv:0901.0802 [hep-ph] ADSCrossRefGoogle Scholar
  56. 56.
    A. Kulesza, L. Motyka, Phys. Rev. Lett. 102, 111802 (2009). arXiv:0807.2405 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    A. Kulesza, L. Motyka, Phys. Rev. D 80, 095004 (2009). arXiv:0905.4749 [hep-ph] ADSCrossRefGoogle Scholar
  58. 58.
    W. Beenakker et al., J. High Energy Phys. 12, 041 (2009). arXiv:0909.4418 [hep-ph] ADSCrossRefGoogle Scholar
  59. 59.
    W. Beenakker et al., J. High Energy Phys. 08, 098 (2010). arXiv:1006.4771 [hep-ph] ADSCrossRefGoogle Scholar
  60. 60.
    M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 842, 414–474 (2011). arXiv:1007.5414 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  61. 61.
    W. Beenakker et al., J. High Energy Phys. 01, 076 (2012). arXiv:1110.2446 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    S. Bornhauser, M. Drees, H.K. Dreiner, J.S. Kim, Phys. Rev. D 76, 095020 (2007). arXiv:0709.2544 [hep-ph] ADSCrossRefGoogle Scholar
  63. 63.
    A. Arhrib, R. Benbrik, K. Cheung, T.-C. Yuan, J. High Energy Phys. 02, 048 (2010). arXiv:0911.1820 [hep-ph] ADSCrossRefGoogle Scholar
  64. 64.
    W. Hollik, M. Kollar, M.K. Trenkel, J. High Energy Phys. 02, 018 (2008). arXiv:0712.0287 [hep-ph] ADSCrossRefGoogle Scholar
  65. 65.
    W. Hollik, E. Mirabella, J. High Energy Phys. 12, 087 (2008). arXiv:0806.1433 [hep-ph] ADSCrossRefGoogle Scholar
  66. 66.
    W. Hollik, E. Mirabella, M.K. Trenkel, J. High Energy Phys. 02, 002 (2009). arXiv:0810.1044 [hep-ph] ADSCrossRefGoogle Scholar
  67. 67.
    M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard, C. Verzegnassi, Int. J. Mod. Phys. A 23, 4779–4810 (2008). arXiv:0804.1252 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  68. 68.
    E. Mirabella, J. High Energy Phys. 12, 012 (2009). arXiv:0908.3318 [hep-ph] ADSCrossRefGoogle Scholar
  69. 69.
    J. Germer, W. Hollik, E. Mirabella, M.K. Trenkel, J. High Energy Phys. 08, 023 (2010). arXiv:1004.2621 [hep-ph] ADSCrossRefGoogle Scholar
  70. 70.
    J. Germer, W. Hollik, E. Mirabella, J. High Energy Phys. 05, 068 (2011). arXiv:1103.1258 [hep-ph] ADSCrossRefGoogle Scholar
  71. 71.
    P. Falgari, C. Schwinn, C. Wever, J. High Energy Phys. 1301, 085 (2013). arXiv:1211.3408 [hep-ph] ADSCrossRefGoogle Scholar
  72. 72.
    D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn, I. Wigmore, Phys. Rev. D 87, 014002 (2013). arXiv:1211.0286 [hep-ph] ADSCrossRefGoogle Scholar
  73. 73.
    K.-i. Hikasa, Y. Nakamura, Z. Phys. C 70, 139–144 (1996). arXiv:hep-ph/9501382. [ERRATUM—ibid. 71, 356 (1996)] CrossRefGoogle Scholar
  74. 74.
    A. Djouadi, W. Hollik, C. Junger, Phys. Rev. D 55, 6975–6985 (1997). arXiv:hep-ph/9609419 ADSCrossRefGoogle Scholar
  75. 75.
    S. Kraml, H. Eberl, A. Bartl, W. Majerotto, W. Porod, Phys. Lett. B 386, 175–182 (1996). arXiv:hep-ph/9605412 ADSCrossRefGoogle Scholar
  76. 76.
    A. Bartl, W. Majerotto, W. Porod, Z. Phys. C 64, 499–508 (1994). [ERRATUM—ibid. 68, 518 (1995)] ADSCrossRefGoogle Scholar
  77. 77.
    A. Bartl et al., Phys. Lett. B 435, 118–124 (1998). arXiv:hep-ph/9804265 ADSCrossRefGoogle Scholar
  78. 78.
    W. Beenakker, R. Hopker, P.M. Zerwas, Phys. Lett. B 378, 159–166 (1996). arXiv:hep-ph/9602378 ADSCrossRefGoogle Scholar
  79. 79.
    W. Beenakker, R. Hopker, T. Plehn, P.M. Zerwas, Z. Phys. C 75, 349–356 (1997). arXiv:hep-ph/9610313 Google Scholar
  80. 80.
    J. Guasch, J. Sola, W. Hollik, Phys. Lett. B 437, 88–99 (1998). arXiv:hep-ph/9802329 ADSCrossRefGoogle Scholar
  81. 81.
    J. Guasch, W. Hollik, J. Sola, J. High Energy Phys. 10, 040 (2002). arXiv:hep-ph/0207364 ADSCrossRefGoogle Scholar
  82. 82.
    A. Arhrib, R. Benbrik, Phys. Rev. D 71, 095001 (2005). arXiv:hep-ph/0412349 ADSCrossRefGoogle Scholar
  83. 83.
    A. Arhrib, R. Benbrik, Afr. J. Math. Phys. 3, 85–91 (2006). arXiv:hep-ph/0511116 Google Scholar
  84. 84.
    Q. Li, L.G. Jin, C.S. Li, Phys. Rev. D 66, 115008 (2002). arXiv:hep-ph/0207363 ADSCrossRefGoogle Scholar
  85. 85.
    C. Weber, K. Kovarik, H. Eberl, W. Majerotto, Nucl. Phys. B 776, 138–169 (2007). arXiv:hep-ph/0701134 ADSCrossRefGoogle Scholar
  86. 86.
    K. Nakamura et al., J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  87. 87.
    P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin et al., Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph] ADSCrossRefGoogle Scholar
  88. 88.
    B.C. Allanach et al., Eur. Phys. J. C 25, 113–123 (2002). arXiv:hep-ph/0202233 ADSCrossRefGoogle Scholar
  89. 89.
    S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph] ADSCrossRefGoogle Scholar
  90. 90.
    B.C. Allanach, Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145 ADSzbMATHCrossRefGoogle Scholar
  91. 91.
    M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  92. 92.
    M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph] ADSCrossRefGoogle Scholar
  93. 93.
    H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella, B. McElrath, J. High Energy Phys. 0712, 076 (2007). arXiv:0707.0030 [hep-ph] ADSCrossRefGoogle Scholar
  94. 94.
    H. Baer, C.-h. Chen, F. Paige, X. Tata, Phys. Rev. D 52, 2746–2759 (1995). arXiv:hep-ph/9503271 ADSCrossRefGoogle Scholar
  95. 95.
    G. Bayatian et al., J. Phys. G 34, 995–1579 (2007) CrossRefGoogle Scholar
  96. 96.
    M.M. Nojiri, Y. Shimizu, S. Okada, K. Kawagoe, J. High Energy Phys. 0806, 035 (2008). arXiv:0802.2412 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für PhysikMunichGermany

Personalised recommendations