Mechanical stability of cylindrical thin-shell wormholes

Regular Article - Theoretical Physics

Abstract

In this paper, we apply the cut and paste procedure to the charged black string for the construction of a thin-shell wormhole. We consider the Darmois–Israel formalism to determine the surface stresses of the shell. We take the Chaplygin gas to deal with the matter distribution on shell. The radial perturbation approach (preserving the symmetry) is used to investigate the stability of static solutions. We conclude that stable static solutions exist both for uncharged and charged black string thin-shell wormholes for particular values of the parameters.

References

  1. 1.
    M. Morris, K. Thorne, Am. J. Phys. 56, 395 (1988) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    F. Rahaman et al., Mod. Phys. Lett. A 24, 53 (2009) MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    P.K.F. Kuhfittig, Acta Phys. Pol. B 41, 2017 (2010) Google Scholar
  4. 4.
    G.A.S. Dias et al., Phys. Rev. D 82, 084023 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    M. Visser, S. Kar, N. Dadhich, Phys. Rev. Lett. 90, 201102 (2003) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E. Poisson, M. Visser, Phys. Rev. D 52, 7318 (1995) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M. Visser, Phys. Rev. D 39, 3182 (1989) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M. Visser, Nucl. Phys. B 328, 203 (1989) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M. Visser, Phys. Lett. B 242, 24 (1990) ADSCrossRefGoogle Scholar
  10. 10.
    M. Visser, Lorentzian Wormholes (AIP Press, New York, 1996) Google Scholar
  11. 11.
    E.F. Eiroa, G.E. Romero, Gen. Relativ. Gravit. 36, 651 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    F.S.N. Lobo, P. Crawford, Class. Quantum Gravity 21, 391 (2004) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    M. Thibeault, C. Simeone, E.F. Eiroa, Gen. Relativ. Gravit. 38, 1593 (2006) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    G. Cle’ment, Phys. Rev. D 51, 6803 (1995) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    R.O. Aros, N. Zamorano, Phys. Rev. D 56, 6607 (1997) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    P.K.F. Kuhfittig, Phys. Rev. D 71, 104007 (2005) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    K.A. Bronnikov, J.P.S. Lemos, Phys. Rev. D 79, 104019 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1994) MATHGoogle Scholar
  19. 19.
    E.F. Eiroa, C. Simeone, Phys. Rev. D 70, 044008 (2004) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    C. Bejarano, E.F. Eiroa, C. Simeone, Phys. Rev. D 75, 027501 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    M.G. Richarte, C. Simeone, Phys. Rev. D 79, 127502 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    E.F. Eiroa, C. Simeone, Phys. Rev. D 81, 084022 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    M. Sharif, M. Azam, J. Cosmol. Astropart. Phys. 02, 043 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    M. Sharif, M. Azam, Gen. Relativ. Gravit. 44, 1181 (2012) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    M. Sharif, M. Azam, J. Phys. Soc. Jpn. 81, 124006 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    M. Sharif, M. Azam, Mon. Not. R. Astron. Soc. 430, 3048 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    M. Sharif, M. Azam, Chin. Phys. B 22, 050401 (2013) CrossRefGoogle Scholar
  28. 28.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    T. Padmanabhan, Phys. Rev. D 66, 021301 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    X. Zhang, F.Q. Wu, J. Zhang, J. Cosmol. Astropart. Phys. 01, 003 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    M. Li, Phys. Lett. B 603, 1 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    R.G. Cai, Phys. Lett. B 657, 228 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    A. Kamenshchik et al., Phys. Lett. B 511, 265 (2001) ADSMATHCrossRefGoogle Scholar
  35. 35.
    A. Dev et al., Phys. Rev. D 67, 023515 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    T. Barreiro et al., Phys. Rev. D 78, 043530 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    F.S.N. Lobo, Phys. Rev. D 71, 084011 (2005) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    F.S.N. Lobo, Phys. Rev. D 73, 064028 (2006) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    E.F. Eiroa, C. Simeone, Phys. Rev. D 71, 127501 (2005) ADSCrossRefGoogle Scholar
  40. 40.
    M.G. Richarte, C. Simeone, Phys. Rev. D 76, 087502 (2007); Erratum, 77, 089903 (2008); Addendum: 83, 087503 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    E.F. Eiroa, C. Simeone, Phys. Rev. D 76, 024021 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    J.P.S. Lemos, V.T. Zanchin, Phys. Rev. D 54, 3840 (1996) MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    G. Darmois, Memorial des Sciences Mathematiques (Gautheir-Villars, Paris, 1927). Fasc. 25 Google Scholar
  44. 44.
    W. Israel, Nuovo Cimento B 44, 1 (1966) ADSCrossRefGoogle Scholar
  45. 45.
    P. Musgrave, K. Lake, Class. Quantum Gravity 13, 1885 (1996) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Division of Science and TechnologyUniversity of EducationLahorePakistan

Personalised recommendations