Flavor constraints on scenarios with two or three heavy squark generations

  • Jörn Kersten
  • Liliana Velasco-SevillaEmail author
Regular Article - Theoretical Physics


We re-assess constraints from flavor-changing neutral currents in the kaon system on supersymmetric scenarios with a light gluino, two heavy generations of squarks and a lighter third generation. We compute for the first time limits in scenarios with three heavy squark families, taking into account QCD corrections at the next-to-leading order. We compare our limits with those in the case of two heavy families. We use the mass insertion approximation and consider contributions from gluino exchange to constrain the mixing between the first and second squark generation. While it is not possible to perform a general analysis, we assess the relevance of each kind of flavor- and CP-violating parameters. We also provide ready to use magic numbers for the computation of the Wilson coefficients at 2 GeV for these scenarios.


Magic Number Gluino Mass Squark Masse Squark Generation Mass Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Joachim Brod, Christian Hoelbling, Luca Silvestrini, and Javier Virto for very helpful discussions. This work was supported by the German Research Foundation (DFG) via the Junior Research Group “SUSY Phenomenology” within the Collaborative Research Center 676 “Particles, Strings and the Early Universe” and by the INFN. We acknowledge the Aspen Center for Theoretical Physics for a very stimulating environment which prompted the beginning of this work. L. V.-S. thanks the University of Hamburg for its hospitality. Finally, we thank the Galileo Galilei Institute for Theoretical Physics for its hospitality during later stages of the work.


  1. 1.
    K. Kadota, G. Kane, J. Kersten, L. Velasco-Sevilla, Flavour issues for string-motivated heavy scalar spectra with a low gluino mass: the G 2-MSSM case. Eur. Phys. J. C 72, 2004 (2012). arXiv:1107.3105 [hep-ph] ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Bagger, K.T. Matchev, R.-J. Zhang, QCD corrections to flavor-changing neutral currents in the supersymmetric Standard Model. Phys. Lett. B 412, 77–85 (1997). arXiv:hep-ph/9707225 ADSCrossRefGoogle Scholar
  3. 3.
    R. Contino, I. Scimemi, The supersymmetric flavor problem for heavy first-two generation scalars at next-to-leading order. Eur. Phys. J. C 10, 347–356 (1999). arXiv:hep-ph/9809437 ADSCrossRefGoogle Scholar
  4. 4.
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone, D. Zhuridov, Minimal flavour violation with hierarchical squark masses. J. High Energy Phys. 1012, 070 (2010). Erratum ibid., 1102, 044 (2011). arXiv:1011.0730 [hep-ph] ADSCrossRefGoogle Scholar
  5. 5.
    E. Bertuzzo, M. Farina, P. Lodone, On the QCD corrections to ΔF=2 FCNC in the supersymmetric SM with hierarchical squark masses. Phys. Lett. B 699, 98–101 (2011). arXiv:1011.3240 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    F. Mescia, J. Virto, Natural SUSY and kaon mixing in view of recent results from lattice QCD. Phys. Rev. D 86, 095004 (2012). arXiv:1208.0534 [hep-ph] ADSCrossRefGoogle Scholar
  7. 7.
    M. Ciuchini, E. Franco, D. Guadagnoli, V. Lubicz, V. Porretti, L. Silvestrini, Next-to-leading order strong interaction corrections to the ΔF=2 effective Hamiltonian in the MSSM. J. High Energy Phys. 0609, 013 (2006). arXiv:hep-ph/0606197 ADSCrossRefGoogle Scholar
  8. 8.
    J. Virto, Exact NLO strong interaction corrections to the ΔF=2 effective Hamiltonian in the MSSM. J. High Energy Phys. 0911, 055 (2009). arXiv:0907.5376 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi, L. Silvestrini, Next-to-leading order QCD corrections to ΔF=2 effective Hamiltonians. Nucl. Phys. B 523, 501–525 (1998). arXiv:hep-ph/9711402 ADSCrossRefGoogle Scholar
  10. 10.
    M. Ciuchini et al., ΔM K and ϵ K in SUSY at the next-to-leading order. J. High Energy Phys. 10, 008 (1998). Erratum added online, Mar/29/2000. arXiv:hep-ph/9808328 ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Buras, S. Jäger, J. Urban, Master formulae for ΔF=2 NLO-QCD factors in the Standard Model and beyond. Nucl. Phys. B 605, 600–624 (2001). arXiv:hep-ph/0102316 ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Pierce, J.A. Bagger, K.T. Matchev, R.-j. Zhang, Precision corrections in the minimal supersymmetric Standard Model. Nucl. Phys. B 491, 3–67 (1997). arXiv:hep-ph/9606211 ADSCrossRefGoogle Scholar
  13. 13.
    J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol., vol. 2 (1992), pp. 1–540 zbMATHCrossRefGoogle Scholar
  14. 14.
    J. Brod, M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP violation parameter ϵ K and ΔM K. Phys. Rev. Lett. 108, 121801 (2012). arXiv:1108.2036 [hep-ph] ADSCrossRefGoogle Scholar
  15. 15.
    V. Bertone et al. (ETM Collaboration), Kaon mixing beyond the SM from N f=2 tmQCD and model independent constraints from the UTA. arXiv:1207.1287 [hep-lat]
  16. 16.
    R. Babich, N. Garron, C. Hoelbling, J. Howard, L. Lellouch, C. Rebbi, K 0\(\bar{K}^{0}\) mixing beyond the Standard Model and CP-violating electroweak penguins in quenched QCD with exact chiral symmetry. Phys. Rev. D 74, 073009 (2006). arXiv:hep-lat/0605016 ADSCrossRefGoogle Scholar
  17. 17.
    A.J. Buras, D. Guadagnoli, Correlations among new CP violating effects in ΔF=2 observables. Phys. Rev. D 78, 033005 (2008). arXiv:0805.3887 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode et al., K→(ππ)I=2 decay amplitude from lattice QCD. Phys. Rev. Lett. 108, 141601 (2012). arXiv:1111.1699 [hep-lat] ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Cohen, D. Kaplan, A. Nelson, The More Minimal Supersymmetric Standard Model. Phys. Lett. B 388, 588–598 (1996). arXiv:hep-ph/9607394 ADSCrossRefGoogle Scholar
  20. 20.
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao, P. Kumar, G 2-MSSM: an M theory motivated model of particle physics. Phys. Rev. D 78, 065038 (2008). arXiv:0801.0478 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    L. Velasco-Sevilla, Gluinos lighter than squarks and detection at the LHC, in Proceedings of the XLVIIth Rencontres de Moriond (EW 2012), (2012). arXiv:1205.5787 [hep-ph] Google Scholar
  22. 22.
    G.F. Giudice, M. Nardecchia, A. Romanino, Hierarchical soft terms and flavor physics. Nucl. Phys. B 813, 156–173 (2009). arXiv:0812.3610 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    S. Dürr et al., Precision computation of the kaon bag parameter. Phys. Lett. B 705, 477–481 (2011). arXiv:1106.3230 [hep-lat] ADSCrossRefGoogle Scholar
  24. 24.
    E. Gamiz et al. (HPQCD Collaboration, UKQCD Collaboration), Unquenched determination of the kaon parameter B K from improved staggered fermions. Phys. Rev. D 73, 114502 (2006). arXiv:hep-lat/0603023 ADSCrossRefGoogle Scholar
  25. 25.
    J. Laiho, R.S. Van de Water, Pseudoscalar decay constants, light-quark masses, and B K from mixed-action lattice QCD. PoS LATTICE2011, 293 (2011). arXiv:1112.4861 [hep-lat] Google Scholar
  26. 26.
    C. Kelly, Continuum results for light hadronic quantities using domain wall fermions with the Iwasaki and DSDR gauge actions. Contribution to The XXIX International Symposium on Lattice Field Theory, 10–16 July 2011. arXiv:1201.0706 [hep-lat]
  27. 27.
    T. Bae et al. (SWME Collaboration), Kaon B parameter from improved staggered fermions in N f=2+1 QCD. Phys. Rev. Lett. 109, 041601 (2012). arXiv:1111.5698 [hep-lat] ADSCrossRefGoogle Scholar
  28. 28.
    C. Hoelbling, Precision flavor physics from the lattice. arXiv:1206.7075 [hep-ph]
  29. 29.
    J. Laiho, E. Lunghi, R. Van de Water, Flavor physics in the LHC era: the role of the lattice. PoS LATTICE2011, 018 (2011). arXiv:1204.0791 [hep-ph] Google Scholar
  30. 30.
    P. Boyle, N. Garron, R. Hudspith (RBC Collaboration, UKQCD Collaboration), Neutral kaon mixing beyond the standard model with n f=2+1 chiral fermions. Phys. Rev. D 86, 054028 (2012). arXiv:1206.5737 [hep-lat] ADSCrossRefGoogle Scholar
  31. 31.
    J. Beringer et al. (Particle Data Group), Review of particle physics. Phys. Rev. D 86, 010001 (2012). ADSCrossRefGoogle Scholar
  32. 32.
    K. Chetyrkin, J.H. Kühn, M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 133, 43–65 (2000). arXiv:hep-ph/0004189 ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    C. Tamarit, Decoupling heavy sparticles in hierarchical SUSY scenarios: two-loop renormalization group equations. arXiv:1204.2292 [hep-ph]
  34. 34.
    C. Tamarit, Decoupling heavy sparticles in effective SUSY scenarios: unification, Higgs masses and tachyon bounds. J. High Energy Phys. 1206, 080 (2012). arXiv:1204.2645 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.II. Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany
  2. 2.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México

Personalised recommendations