Advertisement

Results from the 4PI effective action in 2- and 3-dimensions

  • M. E. CarringtonEmail author
  • Wei-Jie Fu
Regular Article - Theoretical Physics

Abstract

We consider a symmetric scalar theory with quartic coupling and solve the equations of motion from the 4PI effective action in 2- and 3-dimensions using an iterative numerical lattice method. For coupling less than 10 (in dimensionless units) good convergence is obtained in less than 10 iterations. We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and demonstrate the convergence of the results with increasing lattice size. The self-consistent solutions for the 2-point and 4-point functions agree well with the perturbative ones when the coupling is small and deviate when the coupling is large.

Keywords

Effective Action External Momentum Momentum Component Hard Thermal Loop Renormalization Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Natural and Sciences and Engineering Research Council of Canada. WJF is supported in part by the National Natural Science Foundation of China under contract No. 11005138.

References

  1. 1.
    E. Braaten, R.D. Pisarski, Nucl. Phys. B 337, 569 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960) MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961) MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Martin, C. De Dominicis, J. Math. Phys. 5, 14 (1964) ADSCrossRefGoogle Scholar
  5. 5.
    P. Martin, C. De Dominicis, J. Math. Phys. 5, 31 (1964) ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974) ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. Lett. 83, 2906 (1999). arXiv:hep-ph/9906340 ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. D 63, 065003 (2001). arXiv:hep-ph/0005003 ADSCrossRefGoogle Scholar
  9. 9.
    J. Berges, Sz. Borsányi, U. Reinosa, J. Serreau, Phys. Rev. D 71, 105004 (2005). arXiv:hep-ph/0409123 ADSCrossRefGoogle Scholar
  10. 10.
    J. Berges, J. Cox, Phys. Lett. B 517, 369 (2001). arXiv:hep-ph/0006160 ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    J. Berges, Nucl. Phys. A 699, 847 (2002). arXiv:hep-ph/0105311 ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    G. Aarts, J. Berges, Phys. Rev. Lett. 88, 041603 (2002). arXiv:hep-ph/0107129 ADSCrossRefGoogle Scholar
  13. 13.
    G. Aarts, D. Ahrensmeier, R. Baier, J. Berges, J. Serreau, Phys. Rev. D 66, 045008 (2002). arXiv:hep-ph/0201308 ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Blaizot, J.M. Pawlowski, U. Reinosa, Phys. Lett. B 696, 523 (2011). arXiv:1009.6048 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. Aarts, J.M. Martínez Resco, J. High Energy Phys. 02, 061 (2004). arXiv:hep-ph/0402192 ADSCrossRefGoogle Scholar
  16. 16.
    J. Berges, Phys. Rev. D 70, 105010 (2004). arXiv:hep-ph/0401172 MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    G.D. Moore, in Proceedings of SEWM 2002, ed. by M.G. Schmidt, (2002). arXiv:hep-ph/0211281 Google Scholar
  18. 18.
    M.E. Carrington, E. Kovalchuk, Phys. Rev. D 76, 045019 (2007). arXiv:0705.0162 ADSCrossRefGoogle Scholar
  19. 19.
    M.E. Carrington, E. Kovalchuk, Phys. Rev. D 77, 025015 (2008). arXiv:0709.0706 ADSCrossRefGoogle Scholar
  20. 20.
    R.E. Norton, J.M. Cornwall, Ann. Phys. (N.Y.) 91, 106 (1975) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    M.E. Carrington, Eur. Phys. J. C 35, 383 (2004). arXiv:hep-ph/0401123 ADSCrossRefGoogle Scholar
  22. 22.
    M.E. Carrington, Y. Guo, Phys. Rev. D 83, 016006 (2011). arXiv:1010.2978 ADSCrossRefGoogle Scholar
  23. 23.
    M.E. Carrington, Y. Guo, Phys. Rev. D 85, 076008 (2012). arXiv:1109.5169 ADSCrossRefGoogle Scholar
  24. 24.
    M.E. Carrington, E. Kovalchuk, Phys. Rev. D 80, 085013 (2009). arXiv:0906.1140 ADSCrossRefGoogle Scholar
  25. 25.
    M.E. Carrington, E. Kovalchuk, Phys. Rev. D 81, 065017 (2010). arXiv:0912.3149 ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Abraao York, G.D. Moore, M. Tassler. arXiv:1202.4756
  27. 27.
    D. Binosi, L. Theussl, Comput. Phys. Commun. 161, 76 (2004). arXiv:hep-ph/0309015 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsBrandon UniversityBrandonCanada
  2. 2.Winnipeg Institute for Theoretical PhysicsWinnipegCanada

Personalised recommendations