Advertisement

Some implications of lepton flavor violating processes in a supersymmetric Type II seesaw model at TeV scale

  • Raghavendra Srikanth HundiEmail author
Regular Article - Theoretical Physics

Abstract

We have conceived a supersymmetric Type II seesaw model at TeV scale, which has some additional particles consisting of scalar and fermionic triplet Higgs states, whose masses are around a few hundred GeV. In this particular model, we have studied constraints on the masses of triplet states arising from the lepton flavor violating (LFV) processes, such as μ→3e and μ. We have analyzed the implications of these constraints on other observable quantities such as the muon anomalous magnetic moment and the decay patterns of scalar triplet Higgses. Scalar triplet Higgs states can decay into leptons and into supersymmetric fields. We have found that the constraints from LFV can affect these various decay modes.

Keywords

Large Hadron Collider Yukawa Coupling Minimal Supersymmetric Standard Model Neutrino Masse Decay Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is thankful to Dilip Kumar Ghosh for valuable discussions and also for reading the manuscript.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    M.E. Peskin, In *Carry-le-Rouet 1996, High-energy physics*, pp. 49–142. arXiv:hep-ph/9705479
  4. 4.
    G. Altarelli, Nucl. Instrum. Methods A 518, 1 (2004). arXiv:hep-ph/0306055 ADSCrossRefGoogle Scholar
  5. 5.
    C. Quigg, arXiv:hep-ph/0404228
  6. 6.
    J. Ellis, Nucl. Phys. A 827, 187C (2009). arXiv:0902.0357 [hep-ph] ADSCrossRefGoogle Scholar
  7. 7.
    T. Mori, eConf C 060409, 034 (2006). arXiv:hep-ex/0605116 Google Scholar
  8. 8.
    J.M. Yang, Int. J. Mod. Phys. A 23, 3343 (2008). arXiv:0801.0210 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    A.J. Buras, Acta Phys. Pol. Suppl. 3, 7 (2010). arXiv:0910.1481 [hep-ph] Google Scholar
  10. 10.
    Y. Nir, CERN Yellow Report CERN-2010-001, pp. 279–314. arXiv:1010.2666 [hep-ph]
  11. 11.
    R.N. Mohapatra, arXiv:hep-ph/0211252 (see for a review on neutrino masses and mixing)
  12. 12.
    Y. Grossman. arXiv:hep-ph/0305245
  13. 13.
    A. Strumia, F. Vissani. arXiv:hep-ph/0606054
  14. 14.
    M. Magg, C. Wetterich, Phys. Lett. B 94, 61 (1980) ADSCrossRefGoogle Scholar
  15. 15.
    J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980) ADSCrossRefGoogle Scholar
  16. 16.
    R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981) ADSCrossRefGoogle Scholar
  17. 17.
    G. Lazarides, Q. Shafi, C. Wetterich, Nucl. Phys. B 181, 287 (1981) ADSCrossRefGoogle Scholar
  18. 18.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  19. 19.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  20. 20.
    M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles (World Scientific, Singapore, 2004) Google Scholar
  21. 21.
    P. Binetruy, Supersymmetry (Oxford University Press, London, 2006) zbMATHGoogle Scholar
  22. 22.
    H. Baer, X. Tata, Weak Scale Supersymmetry: from Superfields to Scattering Events (Cambridge University Press, Cambridge, 2006) zbMATHCrossRefGoogle Scholar
  23. 23.
    S.P. Martin, arXiv:hep-ph/9709356
  24. 24.
    T. Hambye, E. Ma, U. Sarkar, Nucl. Phys. B 602, 23 (2001). arXiv:hep-ph/0011192 ADSCrossRefGoogle Scholar
  25. 25.
    A. Rossi, Phys. Rev. D 66, 075003 (2002). arXiv:hep-ph/0207006 ADSCrossRefGoogle Scholar
  26. 26.
    M. Hirsch, S. Kaneko, W. Porod, Phys. Rev. D 78, 093004 (2008). arXiv:0806.3361 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    J.N. Esteves, J.C. Romao, A. Villanova del Moral, M. Hirsch, J.W.F. Valle, W. Porod, J. High Energy Phys. 0905, 003 (2009). arXiv:0903.1408 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    S. Antusch, S.F. King, Phys. Lett. B 597, 199 (2004). arXiv:hep-ph/0405093 ADSCrossRefGoogle Scholar
  29. 29.
    E.J. Chun, S. Scopel, Phys. Lett. B 636, 278 (2006). arXiv:hep-ph/0510170 ADSCrossRefGoogle Scholar
  30. 30.
    M. Senami, K. Yamamoto, Int. J. Mod. Phys. A 21, 1291 (2006). arXiv:hep-ph/0305202 ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    A.G. Akeroyd, S. Moretti, Phys. Rev. D 86, 035015 (2012). arXiv:1206.0535 [hep-ph] ADSCrossRefGoogle Scholar
  32. 32.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    E.J. Chun, K.Y. Lee, S.C. Park, Phys. Lett. B 566, 142 (2003). arXiv:hep-ph/0304069 ADSCrossRefGoogle Scholar
  34. 34.
    M. Kakizaki, Y. Ogura, F. Shima, Phys. Lett. B 566, 210 (2003). arXiv:hep-ph/0304254 ADSCrossRefGoogle Scholar
  35. 35.
    E.K. Akhmedov, W. Rodejohann, J. High Energy Phys. 0806, 106 (2008). arXiv:0803.2417 [hep-ph] ADSGoogle Scholar
  36. 36.
    W. Rodejohann, Pramana 72, 217 (2009). arXiv:0804.3925 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    A.G. Akeroyd, M. Aoki, H. Sugiyama, Phys. Rev. D 79, 113010 (2009). arXiv:0904.3640 [hep-ph] ADSCrossRefGoogle Scholar
  38. 38.
    T. Fukuyama, H. Sugiyama, K. Tsumura, J. High Energy Phys. 1003, 044 (2010). arXiv:0909.4943 [hep-ph] ADSCrossRefGoogle Scholar
  39. 39.
    M. Senami, K. Yamamoto, Phys. Rev. D 69, 035004 (2004). arXiv:hep-ph/0305203 ADSCrossRefGoogle Scholar
  40. 40.
    Z. Zhang, arXiv:0801.4905 [hep-ph] (see for a review on the muon (g−2))
  41. 41.
    F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    R.S. Hundi, S. Pakvasa, X. Tata, Phys. Rev. D 79, 095011 (2009). arXiv:0903.1631 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    J. Adam et al. (MEG Collaboration), Phys. Rev. Lett. 107, 171801 (2011). arXiv:1107.5547 [hep-ex] ADSCrossRefGoogle Scholar
  44. 44.
    J. Chakrabortty, P. Ghosh, W. Rodejohann. arXiv:1204.1000 [hep-ph]
  45. 45.
    Y. Abe et al. (DOUBLE-CHOOZ Collaboration), Phys. Rev. Lett. 108, 131801 (2012). arXiv:1112.6353 [hep-ex] ADSCrossRefGoogle Scholar
  46. 46.
    F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012). arXiv:1203.1669 [hep-ex] ADSCrossRefGoogle Scholar
  47. 47.
    J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012). arXiv:1204.0626 [hep-ex] ADSCrossRefGoogle Scholar
  48. 48.
    D.V. Forero, M. Tortola, J.W.F. Valle. arXiv:1205.4018 [hep-ph]
  49. 49.
    P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002). arXiv:hep-ph/0202074 ADSCrossRefGoogle Scholar
  50. 50.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.2666 [hep-ex]
  51. 51.
    T. Moroi, Phys. Rev. D 53, 6565 (1996). arXiv:hep-ph/9512396. Erratum—ibid D 56, 4424 (1997) ADSCrossRefGoogle Scholar
  52. 52.
    S.P. Martin, J.D. Wells, Phys. Rev. D 64, 035003 (2001). arXiv:hep-ph/0103067 ADSCrossRefGoogle Scholar
  53. 53.
    R.S. Hundi, Phys. Rev. D 83, 115019 (2011). arXiv:1101.2810 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    J.F. Gunion, R. Vega, J. Wudka, Phys. Rev. D 42, 1673 (1990) ADSCrossRefGoogle Scholar
  55. 55.
    R. Godbole, B. Mukhopadhyaya, M. Nowakowski, Phys. Lett. B 352, 388 (1995). arXiv:hep-ph/9411324 ADSCrossRefGoogle Scholar
  56. 56.
    K.-m. Cheung, R.J.N. Phillips, A. Pilaftsis, Phys. Rev. D 51, 4731 (1995). arXiv:hep-ph/9411333 ADSCrossRefGoogle Scholar
  57. 57.
    M. Muhlleitner, M. Spira, Phys. Rev. D 68, 117701 (2003). arXiv:hep-ph/0305288 ADSCrossRefGoogle Scholar
  58. 58.
    E.J. Chun, P. Sharma, J. High Energy Phys. 1208, 162 (2012). arXiv:1206.6278 [hep-ph] ADSCrossRefGoogle Scholar
  59. 59.
    A.G. Akeroyd, M. Aoki, Phys. Rev. D 72, 035011 (2005). arXiv:hep-ph/0506176 ADSCrossRefGoogle Scholar
  60. 60.
    T. Han, B. Mukhopadhyaya, Z. Si, K. Wang, Phys. Rev. D 76, 075013 (2007). arXiv:0706.0441 [hep-ph] ADSCrossRefGoogle Scholar
  61. 61.
    D.A. Demir, M. Frank, D.K. Ghosh, K. Huitu, S.K. Rai, I. Turan, Phys. Rev. D 79, 095006 (2009). arXiv:0903.3955 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    A.G. Akeroyd, H. Sugiyama, Phys. Rev. D 84, 035010 (2011). arXiv:1105.2209 [hep-ph] ADSCrossRefGoogle Scholar
  63. 63.
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 0207, 034 (2002). arXiv:hep-ph/0206021 MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    T. Han, H.E. Logan, B. Mukhopadhyaya, R. Srikanth, Phys. Rev. D 72, 053007 (2005). arXiv:hep-ph/0505260 ADSCrossRefGoogle Scholar
  65. 65.
    W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011). arXiv:1106.1334 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsIndian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations