Advertisement

Absorption and scattering of scalar wave from Schwarzschild black hole surrounded by magnetic field

  • Juhua ChenEmail author
  • Hao Liao
  • Yongjiu Wang
  • Tao Chen
Regular Article - Theoretical Physics

Abstract

The astronomical observations imply the existence of a strong magnetic field of up to 104–108 G near supermassive black holes in the active galactic nuclei and even around stellar mass black holes. Based on the quantum scattering theory, we analyze the Schrödinger-type scalar wave equation of black hole surrounded by a magnetic field and numerically investigate its absorption cross section and scattering cross section in this paper. We find that the absorption cross section oscillates about the geometric optical value in the high frequency regime. Furthermore, the magnetic field makes the absorption cross section weaker in the low frequency regime, and this effect is more obvious on lower frequency band. On the other hand, we find that the magnetic field makes the scattering flux weaker and its width narrower in the forward direction. There also exists the glory phenomenon along the backward direction. At fixed frequency, the glory peak is higher and the glory width becomes narrower due to the magnetic field.

Keywords

Black Hole Absorption Cross Section Active Galactic Nucleus Scatter Cross Section Scalar Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This project is supported by the National Natural Science Foundation of China under Grant No. 10873004, the State Key Development Program for Basic Research Program of China under Grant No. 2010CB832803 and the Program for Changjiang Scholars and Innovative Research Team in University, No. IRT0964.

References

  1. 1.
    N. Sánchez, Phys. Rev. D 16, 937 (1977) ADSGoogle Scholar
  2. 2.
    N. Sánchez, Phys. Rev. D 18, 1030 (1978) ADSGoogle Scholar
  3. 3.
    W.G. Unruh, Phys. Rev. D 14, 3251 (1976) ADSCrossRefGoogle Scholar
  4. 4.
    C. Doran, A. Lasenby, S. Dolan, I. Hinder, Phys. Rev. D 71, 124020 (2005) ADSGoogle Scholar
  5. 5.
    L.C.B. Crispino, E.S. Oliveira, A. Higuchi, G.E.A. Matsas, Phys. Rev. D 75, 104012 (2007) ADSGoogle Scholar
  6. 6.
    E.S. Oliveira, S. Dolan, L.C.B. Crispino, Phys. Rev. D 81, 124013 (2010) ADSGoogle Scholar
  7. 7.
    L.C.B. Crispino, E.S. Oliveira, G.E.A. Matras, Phys. Rev. D 76, 107502 (2007) ADSGoogle Scholar
  8. 8.
    L.C.B. Crispino, E.S. Olivera, Phys. Rev. D 78, 024011 (2008) MathSciNetADSGoogle Scholar
  9. 9.
    S.A. Tyulbashev, Astron. Astrophys. 387, 818 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    W.M. Zhang, Y. Lu, S.N. Zhang. arXiv:astro-ph/0501365
  11. 11.
  12. 12.
    R.A. Konoplya, Phys. Rev. D 74, 124015 (2006) MathSciNetADSGoogle Scholar
  13. 13.
    R.D. Blandford, R.L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977) ADSGoogle Scholar
  14. 14.
    A.N. Aliev, D.V. Galtsov, V.I. Petrukhov, Astrophys. Space Sci. 124, 137 (1986) ADSCrossRefGoogle Scholar
  15. 15.
    K.D. Kokkotas, B.G. Schmidt, Living Rev. Relativ. 2, 2 (1999) MathSciNetADSGoogle Scholar
  16. 16.
    K.D. Kokkotas, R.A. Konoplya, Phys. Rev. D 83, 024031 (2011) ADSGoogle Scholar
  17. 17.
    H.P. Nollert, Class. Quantum Gravity 16, R159 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    R.A. Konoplya, R.D.B. Fontana, Phys. Lett. B 659, 375 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    F.J. Ernst, J. Math. Phys. 17, 54 (1976) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    R.A. Konoplya, A. Zhidenko, Phys. Lett. B 648, 236 (2007) MathSciNetADSGoogle Scholar
  21. 21.
    L.C.B. Crispino, S. Dolan, E.S. Oliveira, Phys. Rev. D 79, 064022 (2009) MathSciNetADSGoogle Scholar
  22. 22.
    Y. Décanini, A. Folacci, B. Raffaelli, Phys. Rev. D 81, 104039 (2010) ADSGoogle Scholar
  23. 23.
    A. Higuchi, Class. Quantum Gravity 18, L130 (2001) Google Scholar
  24. 24.
    J.H. Chen, H. Liao, Y.J. Wang, Phys. Lett. B 705, 124 (2011) ADSGoogle Scholar
  25. 25.
    S. Zhou, J.H. Chen, Y.J. Wang, Int. J. Mod. Phys. D 21, 1250077 (2012) ADSGoogle Scholar
  26. 26.
    H. Liao, J.H. Chen, Y.J. Wang, Int. J. Mod. Phys. D 21, 1250045 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    K. Gotfried, T.M. Yan, Quantum Mechanics: Fundamentals, 2nd edn. (Springer, New York, 2004) Google Scholar
  28. 28.
    S. Dolan, E.S. Oliveira, L.C.B. Crispino, Phys. Rev. D 79, 064014 (2009) MathSciNetADSGoogle Scholar
  29. 29.
    J.A. Futterman, H.F.A. Handler, R.A. Matzner, Scattering from Black Holes (Cambridge University Press, Cambridge, 1988) zbMATHCrossRefGoogle Scholar
  30. 30.
    S. Dolan, C.J.L. Doran, A.N. Lasenby, Phys. Rev. D 74, 064005 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Matzner, C. DeWitt-Morette, B. Nelson, T.R. Zhang, Phys. Rev. D 31, 1869 (1985) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.College of Physics and Information ScienceHunan Normal UniversityChangshaChina

Personalised recommendations