Advertisement

Dark energy from conformal symmetry breaking

  • F. DarabiEmail author
Regular Article - Theoretical Physics

Abstract

The breakdown of conformal symmetry in a conformally invariant scalar-tensor gravitational model is revisited in the cosmological context. Although the old scenario of conformal symmetry breaking in cosmology containing a scalar field has already been used in many earlier works, it seems that no special attention has been paid for the investigation on the possible connection between the breakdown of conformal symmetry and the existence of dark energy. In this paper, it is shown that the old scenario of conformal symmetry breaking in cosmology, if properly interpreted, not only has a potential ability to describe the origin of dark energy as a symmetry breaking effect, but also may resolve the coincidence problem.

Keywords

Dark Energy Mass Term Conformal Symmetry Gravitational Coupling Conformal Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to thank the anonymous referee for the enlightening comments. This work has been supported by a grant/research fund number 217/D/5947 from Azarbaijan Shahid Madani University.

References

  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    S.W. Allen et al., Mon. Not. Roy. Astron. Soc. 353, 457 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    V. Shani, A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000) ADSGoogle Scholar
  6. 6.
    S.M. Carroll, Living Rev. Rel. 4, 1 (2001) Google Scholar
  7. 7.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988) ADSCrossRefGoogle Scholar
  11. 11.
    I. Zlatev, L.M. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 562, 147 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    V.K. Onemli, R.P. Woodard, Phys. Rev. D 70, 107301 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    M.R. Setare, J. Sadeghi, A.R. Amani, Phys. Lett. B 666, 288 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 043539 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    B. Feng, X.-L. Wang, X.-M. Zhang, Phys. Lett. B 607, 35 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    M.-Z. Li, B. Feng, X.-M. Zhang, JCAP 0512, 002 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    Y.-F. Cai, E.N. Saridakis, M.R. Setare, J.-Q. Xia, Phys. Rept. 493, 1 (2010) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    W. Zhao, Y. Zhang, Phys. Rev. D 73, 123509 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    M.R. Setare, E.N. Saridakis, Phys. Lett. B 668, 177 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    M.R. Setare, E.N. Saridakis, JCAP 0809, 026 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    G. ’t Hooft. arXiv:gr-qc/9310026
  25. 25.
    L. Susskind, J. Math. Phys. 36, 6377 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    M. Li, Phys. Lett. B 603, 1 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    B. Hu, Y. Ling, Phys. Rev. D 73, 123510 (2006) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    H. Li, Z.K. Guo, Y.Z. Zhang, Int. J. Mod. Phys. D 15, 869 (2006) ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    M.R. Setare, Phys. Lett. B 642, 1 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    M.R. Setare, JCAP 0701, 023 (2007) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    S. Capozziello, M. Francaviglia, Gen. Rel. Grav 40, 357 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys 4, 115 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys 82, 451 (2010) MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    S. Capozziello, M. De Laurentis, Invariance Principles and Extended Gravity: Theory and Probes (Nova Science Pub., New York, 2010) Google Scholar
  35. 35.
    A. De Felice, S. Tsujikawa, (2010). arXiv:1002.4928v1 [gr-qc]
  36. 36.
    I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (Institute of Physics, Bristol, 1992) Google Scholar
  37. 37.
    M. Farhoudi, Gen. Rel. Grav. 38, 1261 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    T.P. Sotiriou, Class. Quantum Grav. 26, 152001 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    A.A. Grib, S.G. Mamayev, V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab., St. Petersburg, 1994) Google Scholar
  40. 40.
    J.D. Bekenstein, A. Meisel, Phys. Rev. D 26, 1313 (1980) ADSCrossRefGoogle Scholar
  41. 41.
    S. Deser, Annals of Physics 59, 248 (1970) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    S.M. Carrol, Why is the Universe Accelerating. AIP Conf. Proc. 743, 16–32 (2005). arXiv:astro-ph/0310342 ADSCrossRefGoogle Scholar
  43. 43.
    I. Antoniadis, S.D. Odintsov, Phys. Lett. B 343, 76 (1995) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations