Advertisement

SUSY-QCD corrections to neutralino pair production in association with a jet

  • Gavin Cullen
  • Nicolas Greiner
  • Gudrun Heinrich
Regular Article - Theoretical Physics

Abstract

We present the NLO SUSY-QCD corrections to the production of a pair of the lightest neutralinos plus one jet at the LHC, appearing as a monojet signature in combination with missing energy. We fully include all non-resonant diagrams, i.e. we do not assume that production and decay factorise. We derive a parameter point based on the p19MSSM which is compatible with current experimental bounds and show distributions based on missing transverse energy and jet observables. Our results are produced with the program GoSam Cullen et al. (Eur. Phys. J. C 72:1889, 2012) for automated one-loop calculations in combination with MadDipole/MadGraph for the real radiation part.

Keywords

Higgs Boson Light Supersymmetric Particle Light Neutralinos Subtraction Term Massive Weakly Interact Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Wolfgang Hollik, Jonas Lindert, Edoardo Mirabella, Davide Pagani, and the members of the GoSam collaboration for various useful discussions. We also acknowledge use of the computing resources at the Rechenzentrum Garching. The work of G.C. was supported by DFG Sonderforschungsbereich Transregio 9, Computergestützte Theoretische Teilchenphysik. We also acknowledge the support of the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet).

References

  1. 1.
    G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia et al., Automated one-loop calculations with GoSam. Eur. Phys. J. C 72, 1889 (2012). arXiv:1111.2034 ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B (2012). arXiv:1207.7235
  3. 3.
    G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 ADSCrossRefGoogle Scholar
  4. 4.
    S.P. Martin, A Supersymmetry primer. hep-ph/9709356
  5. 5.
    M.E. Peskin, Supersymmetry in elementary particle physics. arXiv:0801.1928
  6. 6.
    ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb−1 of \(\sqrt{s}=8\ \mathrm{TeV}\) proton–proton collision data. ATLAS-CONF-2012-109 Google Scholar
  7. 7.
    G. Aad et al. (ATLAS Collaboration), Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \(\sqrt{s}=7\ \mathrm{TeV}\) proton–proton collision data. arXiv:1208.0949
  8. 8.
    S. Chatrchyan et al. (CMS Collaboration), Search for new physics in the multijet and missing transverse momentum final state in proton–proton collisions at \(\sqrt{s} = 7\ \mathrm{TeV}\). Phys. Rev. Lett. 109, 171803 (2012). arXiv:1207.1898 ADSCrossRefGoogle Scholar
  9. 9.
    B.A. Schumm (ATLAS Collaboration), Searching for supersymmetry with the ATLAS detector at the LHC. ATL-PHYS-PROC-2012-134 Google Scholar
  10. 10.
    S. Chatrchyan et al. (CMS Collaboration), Search for supersymmetry in hadronic final states using MT2 in pp collisions at \(\sqrt{s} = 7\ \mathrm{TeV}\). J. High Energy Phys. 1210, 018 (2012). arXiv:1207.1798 ADSCrossRefGoogle Scholar
  11. 11.
    S. Kraml, SUSY status after one year of LHC. arXiv:1206.6618
  12. 12.
    H.K. Dreiner, J.S. Kim, O. Lebedev, First LHC constraints on neutralinos. Phys. Lett. B 715, 199–202 (2012). arXiv:1206.3096 ADSCrossRefGoogle Scholar
  13. 13.
    H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber et al., Mass bounds on a very light neutralino. Eur. Phys. J. C 62, 547–572 (2009). arXiv:0901.3485 ADSCrossRefGoogle Scholar
  14. 14.
    M. Martinez (ATLAS Collaboration), Search for new phenomena in events with a monojet and large missing transverse momentum at the LHC using the ATLAS detector. EPJ Web Conf. 28, 12015 (2012). arXiv:1202.0158 CrossRefGoogle Scholar
  15. 15.
    S. Chatrchyan et al. (CMS Collaboration), Search for dark matter and large extra dimensions in monojet events in pp collisions at \(\sqrt{s}=7\ \mathrm{TeV}\). J. High Energy Phys. 1209, 094 (2012). arXiv:1206.5663 ADSCrossRefGoogle Scholar
  16. 16.
    ATLAS Collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. ATLAS-CONF-2012-084 Google Scholar
  17. 17.
    ATLAS Collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb−1 of pp collisions at \(\sqrt{s}=8\ \mathrm{TeV}\) with the ATLAS detector at the LHC. ATLAS-CONF-2012-147 Google Scholar
  18. 18.
    B.C. Allanach, S. Grab, H.E. Haber, Supersymmetric monojets at the large hadron collider. J. High Energy Phys. 1101, 138 (2011). arXiv:1010.4261 ADSCrossRefGoogle Scholar
  19. 19.
    M. Drees, M. Hanussek, J.S. Kim, Light stop searches at the LHC with monojet events. Phys. Rev. D 86, 035024 (2012). arXiv:1201.5714 ADSCrossRefGoogle Scholar
  20. 20.
    A. Djouadi, A. Falkowski, Y. Mambrini, J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC. arXiv:1205.3169
  21. 21.
    H.K. Dreiner, M. Kramer, J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra. Europhys. Lett. 99, 61001 (2012). arXiv:1207.1613 ADSCrossRefGoogle Scholar
  22. 22.
    C. Englert, J. Jaeckel, E. Re, M. Spannowsky, Evasive Higgs maneuvers at the LHC. Phys. Rev. D 85, 035008 (2012). arXiv:1111.1719 ADSCrossRefGoogle Scholar
  23. 23.
    W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira et al., The production of charginos/neutralinos and sleptons at hadron colliders. Phys. Rev. Lett. 83, 3780–3783 (1999). hep-ph/9906298 ADSCrossRefGoogle Scholar
  24. 24.
    S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC. Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 ADSCrossRefGoogle Scholar
  25. 25.
    M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi et al., Supersymmetry production cross sections in pp collisions at \(\sqrt{s} = 7\ \mathrm{TeV}\). arXiv:1206.2892
  26. 26.
    B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Gaugino production in proton–proton collisions at a center-of-mass energy of 8 TeV. J. High Energy Phys. 1210, 081 (2012). arXiv:1207.2159 ADSCrossRefGoogle Scholar
  27. 27.
    J. Debove, B. Fuks, M. Klasen, Transverse-momentum resummation for gaugino-pair production at hadron colliders. Phys. Lett. B 688, 208–211 (2010). arXiv:0907.1105 ADSCrossRefGoogle Scholar
  28. 28.
    J. Debove, B. Fuks, M. Klasen, Joint resummation for gaugino pair production at hadron colliders. Nucl. Phys. B 849, 64–79 (2011). arXiv:1102.4422 ADSMATHCrossRefGoogle Scholar
  29. 29.
    J. Debove, B. Fuks, M. Klasen, Threshold resummation for gaugino pair production at hadron colliders. Nucl. Phys. B 842, 51–85 (2011). arXiv:1005.2909 ADSMATHCrossRefGoogle Scholar
  30. 30.
    W. Hollik, J.M. Lindert, D. Pagani, NLO corrections to squark-squark production and decay at the LHC. arXiv:1207.1071
  31. 31.
    W. Beenakker, R. Höpker, M. Spira, P. Zerwas, Squark production at the Tevatron. Phys. Rev. Lett. 74, 2905–2908 (1995). hep-ph/9412272 ADSCrossRefGoogle Scholar
  32. 32.
    W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Gluino pair production at the Tevatron. Z. Phys. C 69, 163–166 (1995). hep-ph/9505416 CrossRefGoogle Scholar
  33. 33.
    W. Beenakker, R. Höpker, M. Spira, P. Zerwas, Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51–103 (1997). hep-ph/9610490 ADSGoogle Scholar
  34. 34.
    G. Bozzi, B. Fuks, M. Klasen, Non-diagonal and mixed squark production at hadron colliders. Phys. Rev. D 72, 035016 (2005). hep-ph/0507073 ADSCrossRefGoogle Scholar
  35. 35.
    W. Beenakker, R. Höpker, M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD. hep-ph/9611232
  36. 36.
    S. Bornhauser, M. Drees, H.K. Dreiner, J.S. Kim, Electroweak contributions to squark pair production at the LHC. Phys. Rev. D 76, 095020 (2007). arXiv:0709.2544 ADSCrossRefGoogle Scholar
  37. 37.
    W. Hollik, M. Kollar, M.K. Trenkel, Hadronic production of top-squark pairs with electroweak NLO contributions. J. High Energy Phys. 0802, 018 (2008). arXiv:0712.0287 ADSCrossRefGoogle Scholar
  38. 38.
    W. Hollik, E. Mirabella, M.K. Trenkel, Electroweak contributions to squark–gluino production at the LHC. J. High Energy Phys. 0902, 002 (2009). arXiv:0810.1044 ADSCrossRefGoogle Scholar
  39. 39.
    J. Germer, W. Hollik, E. Mirabella, M.K. Trenkel, Hadronic production of squark–squark pairs: the electroweak contributions. J. High Energy Phys. 1008, 023 (2010). arXiv:1004.2621 ADSCrossRefGoogle Scholar
  40. 40.
    J. Germer, W. Hollik, E. Mirabella, Hadronic production of bottom–squark pairs with electroweak contributions. J. High Energy Phys. 1105, 068 (2011). arXiv:1103.1258 ADSCrossRefGoogle Scholar
  41. 41.
    W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen et al., Soft-gluon resummation for squark and gluino hadroproduction. J. High Energy Phys. 0912, 041 (2009). arXiv:0909.4418 ADSCrossRefGoogle Scholar
  42. 42.
    A. Kulesza, L. Motyka, Threshold resummation for squark–antisquark and gluino-pair production at the LHC. Phys. Rev. Lett. 102, 111802 (2009). arXiv:0807.2405 ADSCrossRefGoogle Scholar
  43. 43.
    A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino–gluino and squark–antisquark pairs at the LHC. Phys. Rev. D 80, 095004 (2009). arXiv:0905.4749 ADSCrossRefGoogle Scholar
  44. 44.
    M. Beneke, P. Falgari, C. Schwinn, Threshold resummation for pair production of coloured heavy (s)particles at hadron colliders. Nucl. Phys. B 842, 414–474 (2011). arXiv:1007.5414 ADSMATHCrossRefGoogle Scholar
  45. 45.
    P. Falgari, C. Schwinn, C. Wever, NLL soft and Coulomb resummation for squark and gluino production at the LHC. J. High Energy Phys. 1206, 052 (2012). arXiv:1202.2260 ADSCrossRefGoogle Scholar
  46. 46.
    M.R. Kauth, J.H. Kuhn, P. Marquard, M. Steinhauser, Gluino pair production at the LHC: the threshold. Nucl. Phys. B 857, 28–64 (2012). arXiv:1108.0361 ADSCrossRefGoogle Scholar
  47. 47.
    U. Langenfeld, S.-O. Moch, Higher-order soft corrections to squark hadro-production. Phys. Lett. B 675, 210–221 (2009). arXiv:0901.0802 ADSCrossRefGoogle Scholar
  48. 48.
    U. Langenfeld, S.-O. Moch, T. Pfoh, QCD threshold corrections for gluino pair production at hadron colliders. J. High Energy Phys. 1211, 070 (2012). arXiv:1208.4281 ADSCrossRefGoogle Scholar
  49. 49.
    D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn, I. Wigmore, Automated squark and gluino production to next-to-leading order. arXiv:1211.0286
  50. 50.
    D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn, I. Wigmore, Sgluon pair production to next-to-leading order. Phys. Rev. D 85, 114024 (2012). arXiv:1203.6358 ADSCrossRefGoogle Scholar
  51. 51.
    T. Binoth, D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn et al., Automized squark–neutralino production to next-to-leading order. Phys. Rev. D 84, 075005 (2011). arXiv:1108.1250 ADSCrossRefGoogle Scholar
  52. 52.
    R. Horsky, M. Kramer, A. Mück, P.M. Zerwas, Squark cascade decays to charginos/neutralinos: gluon radiation. Phys. Rev. D 78, 035004 (2008). arXiv:0803.2603 ADSCrossRefGoogle Scholar
  53. 53.
    H. Dreiner, M. Kramer, J. Tattersall, Exploring QCD uncertainties when setting limits on compressed SUSY spectra. arXiv:1211.4981
  54. 54.
    A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). hep-ph/0211331 ADSMATHCrossRefGoogle Scholar
  55. 55.
    C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo, Supersymmetry without prejudice. J. High Energy Phys. 0902, 023 (2009). arXiv:0812.0980 MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon, T. Reiter, Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs. Comput. Phys. Commun. 180, 2317–2330 (2009). arXiv:0810.0992 ADSMATHCrossRefGoogle Scholar
  57. 57.
    G. Cullen, J.P. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon et al., Golem95C: a library for one-loop integrals with complex masses. Comput. Phys. Commun. 182, 2276–2284 (2011). arXiv:1101.5595 MathSciNetADSMATHCrossRefGoogle Scholar
  58. 58.
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions. Comput. Phys. Commun. 182, 2427–2438 (2011). arXiv:1007.4716 ADSMATHCrossRefGoogle Scholar
  59. 59.
    T. Stelzer, W. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81, 357–371 (1994). hep-ph/9401258 ADSCrossRefGoogle Scholar
  60. 60.
    R. Frederix, T. Gehrmann, N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent. J. High Energy Phys. 0809, 122 (2008). arXiv:0808.2128 ADSCrossRefGoogle Scholar
  61. 61.
    R. Frederix, T. Gehrmann, N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework. J. High Energy Phys. 1006, 086 (2010). arXiv:1004.2905 ADSCrossRefGoogle Scholar
  62. 62.
    N.D. Christensen, C. Duhr, FeynRules—Feynman rules made easy. Comput. Phys. Commun. 180, 1614–1641 (2009). arXiv:0806.4194 ADSCrossRefGoogle Scholar
  63. 63.
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer et al., UFO—the universal FeynRules output. Comput. Phys. Commun. 183, 1201–1214 (2012). arXiv:1108.2040 ADSCrossRefGoogle Scholar
  64. 64.
    P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level. J. High Energy Phys. 1008, 080 (2010). arXiv:1006.0710 ADSCrossRefGoogle Scholar
  65. 65.
    G. Heinrich, G. Ossola, T. Reiter, F. Tramontano, Tensorial reconstruction at the integrand level. J. High Energy Phys. 1010, 105 (2010). arXiv:1008.2441 ADSCrossRefGoogle Scholar
  66. 66.
    S. Catani, M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD. Nucl. Phys. B 485, 291–419 (1997). hep-ph/9605323 ADSCrossRefGoogle Scholar
  67. 67.
    Z. Nagy, Z. Trocsanyi, Next-to-leading order calculation of four jet observables in electron positron annihilation. Phys. Rev. D 59, 014020 (1999). hep-ph/9806317 ADSCrossRefGoogle Scholar
  68. 68.
    F. Maltoni, T. Stelzer, MadEvent: automatic event generation with MadGraph. J. High Energy Phys. 0302, 027 (2003). hep-ph/0208156 ADSCrossRefGoogle Scholar
  69. 69.
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet et al., MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 ADSCrossRefGoogle Scholar
  70. 70.
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. J. High Energy Phys. 0807, 029 (2008). arXiv:0805.3067 ADSCrossRefGoogle Scholar
  71. 71.
    J.M. Campbell, F. Tramontano, Next-to-leading order corrections to Wt production and decay. Nucl. Phys. B 726, 109–130 (2005). hep-ph/0506289 ADSMATHCrossRefGoogle Scholar
  72. 72.
    O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. Dolan et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B s to μ + μ and XENON100 data. Eur. Phys. J. C 72, 2243 (2012). arXiv:1207.7315 ADSCrossRefGoogle Scholar
  73. 73.
    C. Strege, G. Bertone, F. Feroz, M. Fornasa, R.R. de Austri et al., Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints. arXiv:1212.2636
  74. 74.
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). hep-ph/0104145 ADSMATHCrossRefGoogle Scholar
  75. 75.
    A. Djouadi, M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Pol. B 38, 635–644 (2007). hep-ph/0609292 ADSGoogle Scholar
  76. 76.
    A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). hep-ph/9704448 ADSMATHCrossRefGoogle Scholar
  77. 77.
    M. Mühlleitner, A. Djouadi, Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46–70 (2005). hep-ph/0311167 ADSCrossRefGoogle Scholar
  78. 78.
    P.Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. J. High Energy Phys. 0407, 036 (2004). hep-ph/0311123 ADSCrossRefGoogle Scholar
  79. 79.
    B. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boudjema et al., SUSY Les Houches accord 2. Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045 ADSCrossRefGoogle Scholar
  80. 80.
    T. Hahn, M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions. Comput. Phys. Commun. 118, 153–165 (1999). hep-ph/9807565 ADSCrossRefGoogle Scholar
  81. 81.
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3. Comput. Phys. Commun. 140, 418–431 (2001). hep-ph/0012260 ADSMATHCrossRefGoogle Scholar
  82. 82.
    T. Hahn, C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc. Comput. Phys. Commun. 143, 54–68 (2002). hep-ph/0105349 ADSMATHCrossRefGoogle Scholar
  83. 83.
    R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L. Del Debbio et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244–289 (2013). arXiv:1207.1303 ADSCrossRefGoogle Scholar
  84. 84.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm. J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 ADSCrossRefGoogle Scholar
  85. 85.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 ADSCrossRefGoogle Scholar
  86. 86.
    M. Cacciari, G.P. Salam, Dispelling the N 3 myth for the k t jet-finder. Phys. Lett. B 641, 57–61 (2006). hep-ph/0512210 ADSCrossRefGoogle Scholar
  87. 87.
    B. Allanach, M. Battaglia, G. Blair, M.S. Carena, A. De Roeck et al., The snowmass points and slopes: benchmarks for SUSY searches. Eur. Phys. J. C 25, 113–123 (2002). hep-ph/0202233 ADSCrossRefGoogle Scholar
  88. 88.
    A. Denner, S. Dittmaier, M. Roth, Electroweak corrections to charged-current e + e : 4 fermion processes: technical details and further results. Nucl. Phys. B 742 (2005). hep-ph/0505042
  89. 89.
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes. J. High Energy Phys. 10, 015 (2005). hep-ph/0504267 MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Gavin Cullen
    • 1
  • Nicolas Greiner
    • 2
  • Gudrun Heinrich
    • 2
  1. 1.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  2. 2.Max-Planck-Institut für PhysikMünchenGermany

Personalised recommendations