Advertisement

A noncommutative model of BTZ spacetime

  • Marco MacedaEmail author
  • Alfredo Macías
Regular Article - Theoretical Physics
  • 125 Downloads

Abstract

We analyze a noncommutative model of BTZ spacetime based on deformation of the standard symplectic structure of phase space, i.e., a modification of the standard commutation relations among coordinates and momenta in phase space. We find a BTZ-like solution that is nonperturbative in the non-trivial noncommutative structure. It is shown that the use of deformed commutation relations in the modified non-canonical phase space eliminates the horizons of the standard metric.

Keywords

Black Hole Heisenberg Algebra Commutative Case Noncommutative Parameter Standard Symplectic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank the referee for her/his valuable comments on this work. We would also like to thank Alberto García for useful discussions and literature hints. This research was supported by CONACyT Grant No. 166041F3.

References

  1. 1.
    J.D. Barrow, A.B. Burd, D. Lancaster, Class. Quantum Gravity 3(4), 551 (1986) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S. Deser, R. Jackiw, Ann. Phys. 153, 405 (1984). doi: 10.1016/0003-4916(84)90025-3 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S. Deser, R. Jackiw, G. ’t Hooft, Ann. Phys. 152, 220 (1984). doi: 10.1016/0003-4916(84)90085-X ADSCrossRefGoogle Scholar
  4. 4.
    G. ’t Hooft, Commun. Math. Phys. 117, 685 (1988). doi: 10.1007/BF01218392 ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992). doi: 10.1103/PhysRevLett.69.1849 MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 48, 1506 (1993). doi: 10.1103/PhysRevD.48.1506 MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    S. Carlip, Class. Quantum Gravity 12, 2853 (1995). doi: 10.1088/0264-9381/12/12/005 MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Carlip, Class. Quantum Gravity 22, R85 (2005). doi: 10.1088/0264-9381/22/12/R01 MathSciNetADSCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Bieliavsky, S. Detournay, M. Rooman, P. Spindel, in 8èmes Rencontres Mathématiques de Glanon (2005). arXiv:hep-th/0511080
  10. 10.
    A.A. Garcia, F.W. Hehl, C. Heinicke, A. Macias, Phys. Rev. D 67, 124016 (2003). doi: 10.1103/PhysRevD.67.124016 MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. Cadoni, M.R. Setare, J. High Energy Phys. 0807, 131 (2008). doi: 10.1088/1126-6708/2008/07/131 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J.P.M. Pitelli, P.S. Letelier, Phys. Rev. D 77, 124030 (2008). doi: 10.1103/PhysRevD.77.124030 MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.M. Garcia-Islas, Class. Quantum Gravity 25, 245001 (2008). doi: 10.1088/0264-9381/25/24/245001 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    E. Greenwood, E. Halstead, P. Hao, J. High Energy Phys. 1002, 044 (2010). doi: 10.1007/JHEP02(2010)044 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Carlip, Rep. Prog. Phys. 64, 885 (2001). doi: 10.1088/0034-4885/64/8/301 MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J.W. Moffat, Phys. Lett. B 491, 345 (2000) MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    P. Aschieri, C. Blohmann, M. Dimitrijević, F. Meyer, P. Schupp, J. Wess, Class. Quantum Gravity 22, 3511 (2005). doi: 10.1088/0264-9381/22/17/011 ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    X. Calmet, A. Kobakhidze, Phys. Rev. D 72, 045010 (2005). doi: 10.1103/PhysRevD.72.045010 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    M. Dobrski, Phys. Rev. D 84, 065005 (2011). doi: 10.1103/PhysRevD.84.065005 ADSCrossRefGoogle Scholar
  20. 20.
    M. Chaichian, A. Tureanu, G. Zet, Phys. Lett. B 660, 573 (2008). doi: 10.1016/j.physletb.2008.01.029 MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    P. Nicolini, Int. J. Mod. Phys. A 24, 1229 (2009). doi: 10.1142/S0217751X09043353 MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    P. Schupp, S. Solodukhin, Exact black hole solutions in noncommutative gravity (2009). arXiv:0906.2724 [hep-th]
  23. 23.
    D. Wang, R.B. Zhang, X. Zhang, Class. Quantum Gravity 26, 085014 (2009). doi: 10.1088/0264-9381/26/8/085014 ADSCrossRefGoogle Scholar
  24. 24.
    M. Maceda, A. Macias, Phys. Rev. D 84, 064002 (2011). doi: 10.1103/PhysRevD.84.064002 ADSCrossRefGoogle Scholar
  25. 25.
    M. Maceda, A. Macias, Phys. Lett. B 705, 157 (2011). doi: 10.1016/j.physletb.2011.09.115 ADSCrossRefGoogle Scholar
  26. 26.
    N. Mebarki, F. Khelili, H. Bouhalouf, O. Mebarki, Electron. J. Theor. Phys. 6, 193 (2009) Google Scholar
  27. 27.
    A. Djemai, H. Smail, Commun. Theor. Phys. 41, 837 (2004) MathSciNetzbMATHGoogle Scholar
  28. 28.
    E.M. Abreu, C. Neves, W. Oliveira, Int. J. Mod. Phys. A 21, 5359 (2006). doi: 10.1142/S0217751X06034094 MathSciNetADSCrossRefzbMATHGoogle Scholar
  29. 29.
    A. Pachol, κ-Minkowski spacetime: mathematical formalism and applications in Planck scale physics. Ph.D. thesis, University of Wroclaw (2011) Google Scholar
  30. 30.
    D. Kovacevic, S. Meljanac, A. Pachol, R. Strajn, Phys. Lett. B 711, 122 (2012). doi: 10.1016/j.physletb.2012.03.062 MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    B. Dolan, K.S. Gupta, A. Stern, Class. Quantum Gravity 24, 1647 (2007). doi: 10.1088/0264-9381/24/6/017 MathSciNetADSCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Demetrian, P. Presnajder, A toy model for black hole in noncommutative spaces (2006). arXiv:gr-qc/0604113
  33. 33.
    T.R. Govindarajan, S. Digal, K. Gupta, X. Martin, Phase structures in fuzzy geometries (2012). arXiv:1204.6165 [hep-th]
  34. 34.
    A.H. Chamseddine, Int. J. Mod. Phys. A 16, 759 (2001). doi: 10.1142/S0217751X01003883 MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. 35.
    C.L. Mantz, Holomorphic gravity: on the reciprocity of momentum and space. Master’s thesis, Spinoza Institute, Institute for Theoretical Physics, Utrecht University (2007) Google Scholar
  36. 36.
    C.L. Mantz, T. Prokopec, Found. Phys. 41, 1597 (2011). doi: 10.1007/s10701-011-9570-3 MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana-IztapalapaMexico D.F.Mexico
  2. 2.Departamento de FísicaCINVESTAV–IPNMexico D.F.Mexico

Personalised recommendations