Advertisement

A solution of the coincidence problem based on the recent galactic core black hole mass density increase

  • Georgios KofinasEmail author
  • Vasilios Zarikas
Regular Article - Theoretical Physics

Abstract

A mechanism capable to provide a natural solution to two major cosmological problems, i.e. the cosmic acceleration and the coincidence problem, is proposed. A specific brane–bulk energy exchange mechanism produces a total dark pressure, arising when adding all normal to the brane negative pressures in the interior of galactic core black holes. This astrophysically produced negative dark pressure explains cosmic acceleration and why the dark energy today is of the same order to the matter density for a wide range of the involved parameters. An exciting result of the analysis is that the recent rise of the galactic core black hole mass density causes the recent passage from cosmic deceleration to acceleration. Finally, it is worth mentioning that this work corrects a wide spread fallacy among brane cosmologists, i.e. that escaping gravitons result in positive dark pressure.

Keywords

Black Hole Dark Energy Cosmic Acceleration Dark Radiation Bulk Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank V. Charmandaris, T. Harko, E. Kiritsis and I. Papadakis for useful discussions and comments.

References

  1. 1.
    Y.B. Zeldovich, JETP Lett. 6, 316 (1967). Pisma Zh. Eksp. Teor. Fiz. 6, 883 (1967) ADSGoogle Scholar
  2. 2.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Maartens, Living Rev. Relativ. 7, 7 (2004). gr-qc/0312059 ADSGoogle Scholar
  5. 5.
    R. Gregory, Lect. Notes Phys. 769, 259 (2009). 0804.2595 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E. Kiritsis, G. Kofinas, N. Tetradis, T.N. Tomaras, V. Zarikas, J. High Energy Phys. 0302, 035 (2003). hep-th/0207060 MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C. Bogdanos, A. Dimitriadis, K. Tamvakis, Phys. Rev. D 75, 087303 (2007). hep-th/0611094 ADSCrossRefGoogle Scholar
  8. 8.
    P.S. Apostolopoulos, N. Tetradis, Class. Quantum Gravity 21, 4781 (2004). hep-th/0404105 MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    D. Langlois, L. Sorbo, Phys. Rev. D 68, 084006 (2003). hep-th/0306281 ADSCrossRefGoogle Scholar
  10. 10.
    A. Hebecker, J. March-Russell, Nucl. Phys. B 608, 375 (2001). hep-ph/0103214 MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    E. Greenwood, D. Stojkovic, J. High Energy Phys. 0909, 058 (2009). 0806.0628 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    K. Ichiki, M. Yahiro, T. Kajino, M. Orito, G.J. Mathews, Phys. Rev. D 66, 043521 (2002). astro-ph/0203272 ADSCrossRefGoogle Scholar
  13. 13.
    Thorclasius, Ph.D. thesis. arXiv:gr-qc/0609011v1
  14. 14.
    E.V. Linder, A. Jenkins, Mon. Not. R. Astron. Soc. 346, 573 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    M. Brandle, A. Lukas, B.A. Ovrut, Phys. Rev. D 63, 026003 (2001). hep-th/0003256 MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A. Lukas, B.A. Ovrut, K.S. Stelle, D. Waldram, Nucl. Phys. B 552, 246 (1999). hep-th/9806051 MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    A. Kehagias, E. Kiritsis, J. High Energy Phys. 9911, 022 (1999). hep-th/9910174 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    P. Kraus, J. High Energy Phys. 9912, 011 (1999). hep-th/9910149 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    D. Ida, J. High Energy Phys. 0009, 014 (2000). gr-qc/9912002 MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    N. Tetradis, Class. Quantum Gravity 21, 5221 (2004). hep-th/0406183 MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Y. Donagi, J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, J. High Energy Phys. 0111, 041 (2001). hep-th/0105199 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    E. Kiritsis, J. Cosmol. Astropart. Phys. 0510, 014 (2005). hep-th/0504219 MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    S.L. Dubovsky, V.A. Rubakov, P.G. Tinyakov, Phys. Rev. D 62, 105011 (2000). hep-th/0006046 ADSCrossRefGoogle Scholar
  24. 24.
    K. Ichiki, P.M. Garnavich, T. Kajino, G.J. Mathews, M. Yahiro, Phys. Rev. D 68, 083518 (2003). astro-ph/0210052 ADSCrossRefGoogle Scholar
  25. 25.
    L.A. Gergely, I. Kepiro, J. Cosmol. Astropart. Phys. 0707, 007 (2007). hep-th/0608195 MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    D.M. Alexander, W.N. Brandt, I. Smail, A.M. Swinbank, F.E. Bauer, A.W. Blain, S.C. Chapman, K.E.K. Coppin, R.J. Ivison, K. Menendez-Delmestre, Astron. J. 135, 1968 (2008). 0803.0634 [astro-ph] ADSCrossRefGoogle Scholar
  27. 27.
    T. Herr, W. Hofmann, for the H.E.S.S. Collaboration, AIP Conf. Proc. 1085, 648 (2009). 0811.2897 [astr-ph] Google Scholar
  28. 28.
    A.A. Zdziarski, J. Malzac, W. Bednarek, 0809.3255 [astro-ph]. Mon. Not. R. Astron. Soc. Lett. doi: 10.1111/j.1745-3933.2008.00605.x
  29. 29.
    K.M. Udayanandan, P. Sethumadhavan, V.M. Bannur, Phys. Rev. C 76, 044908 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    V.M. Bannur, Phys. Lett. B 362, 7 (1995) ADSCrossRefGoogle Scholar
  31. 31.
    S. Pal, Phys. Rev. D 74, 124019 (2006). gr-qc/0609065 ADSCrossRefGoogle Scholar
  32. 32.
    C.G. Boehmer, T. Harko, Class. Quantum Gravity 24, 3191 (2007). 0705.2496 [gr-qc] ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    T. Harko, K.S. Cheng, Astrophys. J. 636, 8 (2005). astro-ph/0509576 ADSCrossRefGoogle Scholar
  34. 34.
    O. Lunin, S.D. Mathur, Nucl. Phys. B 623, 342 (2002). hep-th/0109154 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    O. Lunin, S.D. Mathur, Phys. Rev. Lett. 88, 211303 (2002). hep-th/0202072 MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    S.D. Mathur, Int. J. Mod. Phys. D 11, 1537 (2002). hep-th/0205192 MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    S.D. Mathur, Fortschr. Phys. 53, 793 (2005). hep-th/0502050 MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    S.D. Mathur, Class. Quantum Gravity 23, R115 (2006). hep-th/0510180 MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    K. Skenderis, M. Taylor, Phys. Rep. 467, 117 (2008). 0804.0552 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    I. Bena, N.P. Warner, Lect. Notes Phys. 755, 1 (2008). hep-th/0701216 MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    N.P. Warner, Prog. Theor. Phys. Suppl. 177, 228 (2009). 0810.2596 [hep-th] ADSCrossRefGoogle Scholar
  42. 42.
    J.M. Maldacena, L. Susskind, Nucl. Phys. B 475, 679 (1996). hep-th/9604042 MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    A. Merloni, S. Heinz, Mon. Not. R. Astron. Soc. 338, 1011 (2008) ADSGoogle Scholar
  44. 44.
    T. Di Matteo, J. Colberg, V. Springel, L. Hernquist, D. Sijacki, 0705.2269 [astro-ph]
  45. 45.
    P.H. Frampton, J. Cosmol. Astropart. Phys. 0910, 016 (2009). 0905.3632 [hep-th] ADSCrossRefGoogle Scholar
  46. 46.
    P.H. Frampton, Astropart. Phys. 34, 617 (2011). 0910.1152 [astr-ph] ADSCrossRefGoogle Scholar
  47. 47.
    L. Ferrarese, H. Ford, Space Sci. Rev. 116(3–4), 523–624 (2005). doi: 10.1007/s11214-005-3947-6 ADSCrossRefGoogle Scholar
  48. 48.
    S. Collin, in Proceedings of the XXth Rencontres de Blois, ed. by J. Dumarchez, J. Van Tran Thanh (The Gioi Publishers). 0811.1731 [astro-ph]
  49. 49.
    A. Goldwurm, C. R. Phys. 8(1), 35–44 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    S.W. Davis, C. Done, O.M. Blaes, Astrophys. J. 647, 525 (2006) ADSCrossRefGoogle Scholar
  51. 51.
    S.-S. Weng, S.-N. Zhang, Astrophys. J. (accepted for publication). 1107.5171 [astro-ph]
  52. 52.
    M. Sadegh Movahed, A. Sheykhi, Mon. Not. R. Astron. Soc. 388, 197–210 (2008) ADSCrossRefGoogle Scholar
  53. 53.
    S. Thomas, Phys. Rev. Lett. 89, 081301 (2002) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    S.D.H. Hsu, Phys. Lett. B 594, 13 (2004). hep-th/0403052 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CreteHeraklionGreece
  2. 2.Department of Electrical EngineeringATEI LamiasLamiaGreece

Personalised recommendations