Advertisement

Effective squark/chargino/neutralino couplings: MadGraph implementation

  • Arian Abrahantes
  • Jaume Guasch
  • Siannah PeñarandaEmail author
  • Raül Sánchez-Florit
Regular Article - Theoretical Physics

Abstract

We have included the effective description of squark interactions with charginos/neutralinos in the MadGraph MSSM model. This effective description includes the effective Yukawa couplings, and another logarithmic term which encodes the supersymmetry-breaking. We have performed an extensive test of our implementation analyzing the results of the partial decay widths of squarks into charginos and neutralinos obtained by using FeynArts/FormCalc programs and the new model file in MadGraph. We present results for the cross-section of top-squark production decaying into charginos and neutralinos.

Keywords

Large Hadron Collider Minimal Supersymmetric Standard Model Decay Width Radiative Correction International Linear Collider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

J.G. and R.S.F. have been supported by MICINN (Spain) (FPA2010-20807-C02-02); J.G. also by DURSI (2009-SGR-168) and by DGIID-DGA (FMI45/10); S.P. and A.A. by grant (FPA2009-09638); S.P. also by a Ramón y Cajal contract from MICINN (PDRYC-2006-000930), DGIID-DGA (2011-E24/2) and DURSI (2009-SGR-502); A.A. by an Ánimo-Chévere project from Erasmus Mundus Program of the European Commission and by a SANTANDER Scholarship Program for Latinoamerican students. The Spanish Consolider-Ingenio 2010 Program CPAN (CSD2007-00042) has supported this work. J.G. and R.S.F. wish to thank the hospitality of the Universidad de Zaragoza. A.A. wishes to thank the hospitality of the Universitat de Barcelona.

References

  1. 1.
    J. Beringer et al. (Particle Data Group Collaboration), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    H.E. Haber, in Proceedings of Recent Advances in the Superworld, ed. by J.L. Lopez, D.V. Nanopoulos. Woodlands, USA, 13–16 April 1993, pp. 37–51. arXiv:hep-ph/9308209 Google Scholar
  3. 3.
    ATLAS Collaboration, CERN-LHCC-99-14, CERN-LHCC-99-15, ATLAS: detector and physics performance technical design report, vols. 1 and 2 Google Scholar
  4. 4.
    G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995–1579 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Aguilar-Saavedra et al. (ECFA/DESY LC Physics Working Group Collaboration), in TESLA Technical Design Report Part III: Physics at an e + e Linear Collider, ed. by R. Heuer, D.J. Miller, F. Richard, P.M. Zerwas. arXiv:hep-ph/0106315
  6. 6.
    G. Weiglein et al. (LHC/LC Study Group Collaboration), Phys. Rep. 426, 47–358 (2006). arXiv:hep-ph/0410364 CrossRefGoogle Scholar
  7. 7.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  8. 8.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  9. 9.
    A.B. Lahanas, D.V. Nanopoulos, Phys. Rep. 145, 1 (1987) ADSCrossRefGoogle Scholar
  10. 10.
    S. Ferrara (ed.). Supersymmetry, vols. 1–2 (North-Holland/World Scientific, Singapore, 1987) Google Scholar
  11. 11.
    G. Aad et al. (ATLAS Collaboration), arXiv:0901.0512 [hep-ex]
  12. 12.
    A. Parker (ATLAS and CMS Collaborations), SUSY searches (ATLAS/CMS): the lady vanishes, plenary talk at the 36th International Conference on High Energy Physics (ICHEP2012), Melbourne, Australia, 4–11 July 2012. https://indico.cern.ch/contributionDisplay.py?contribId=11&confId=181298
  13. 13.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 221804 (2011). arXiv:1109.2352 [hep-ex] ADSCrossRefGoogle Scholar
  14. 14.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 67–85 (2012). arXiv:1109.6572 [hep-ex] ADSCrossRefGoogle Scholar
  15. 15.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 012006 (2012). arXiv:1109.6606 [hep-ex] ADSCrossRefGoogle Scholar
  16. 16.
    S. Chatrchyan et al. (CMS Collaboration), CMS-PAS-SUS-12-009. http://cdsweb.cern.ch/record/1459812
  17. 17.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1207, 167 (2012). arXiv:1206.1760 [hep-ex] ADSCrossRefGoogle Scholar
  18. 18.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 109, 171803 (2012). arXiv:1207.1898 [hep-ex] ADSCrossRefGoogle Scholar
  19. 19.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211802 (2012). arXiv:1208.1447 [hep-ex] ADSCrossRefGoogle Scholar
  20. 20.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 109, 211803 (2012). arXiv:1208.2590 [hep-ex] ADSCrossRefGoogle Scholar
  21. 21.
    G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 72, 2237 (2012). arXiv:1208.4305 [hep-ex] ADSCrossRefGoogle Scholar
  22. 22.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 092002 (2012). arXiv:1208.4688 [hep-ex] ADSCrossRefGoogle Scholar
  23. 23.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 86, 072010 (2012). arXiv:1208.4859 [hep-ex] ADSCrossRefGoogle Scholar
  24. 24.
    G. Aad et al. (ATLAS Collaboration), arXiv:1209.2102 [hep-ex]
  25. 25.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1211, 094 (2012). arXiv:1209.4186 [hep-ex] ADSCrossRefGoogle Scholar
  26. 26.
    ATLAS experiment public results on SUSY searches web page. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
  27. 27.
    CMS supersymmetry physics results web page. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
  28. 28.
    J. Incandela (CMS Collaboration), Status of the CMS SM Higgs search, talk at CERN, 4 July 2012. http://cms.web.cern.ch/news/observation-new-particle-mass-125-gev
  29. 29.
    F. Gianotti (ATLAS Collaboration), Latest results from ATLAS Higgs search, talk at CERN, 4 July 2012. http://www.atlas.ch/news/2012/latest-results-from-higgs-search.html
  30. 30.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  31. 31.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  32. 32.
    CDF Collaboration, D0 Collaboration, Tevatron New Physics, Higgs Working Group, arXiv:1207.0449 [hep-ex]
  33. 33.
    T. Aaltonen, et al. (CDF and D0 Collaborations), Phys. Rev. Lett. 109, 071804 (2012). arXiv:1207.6436 [hep-ex] ADSCrossRefGoogle Scholar
  34. 34.
    N. Mahmoudi, Implications of LHC Higgs and SUSY searches for MSSM, talk at the 36th International Conference on High Energy Physics (ICHEP2012), Melbourne, Australia, 4–11 July 2012. https://indico.cern.ch/contributionDisplay.py?contribId=430&confId=181298
  35. 35.
    A. Bartl, W. Majerotto, W. Porod, Z. Phys. C 64, 499–508 (1994) [Erratum: Z. Phys. C 68, 518 (1995)] ADSCrossRefGoogle Scholar
  36. 36.
    W. Beenakker, R. Hopker, P.M. Zerwas, Phys. Lett. B 378, 159–166 (1996). arXiv:hep-ph/9602378 ADSCrossRefGoogle Scholar
  37. 37.
    W. Beenakker, R. Hopker, T. Plehn, P.M. Zerwas, Z. Phys. C 75, 349–356 (1997). arXiv:hep-ph/9610313 CrossRefGoogle Scholar
  38. 38.
    A. Bartl et al., Phys. Lett. B 419, 243–252 (1998). arXiv:hep-ph/9710286 ADSCrossRefGoogle Scholar
  39. 39.
    A. Bartl et al., Phys. Lett. B 435, 118–124 (1998). arXiv:hep-ph/9804265 ADSCrossRefGoogle Scholar
  40. 40.
    A. Bartl et al., Phys. Rev. D 59, 115007 (1999). arXiv:hep-ph/9806299 ADSCrossRefGoogle Scholar
  41. 41.
    A. Bartl et al., Phys. Lett. B 460, 157–163 (1999). arXiv:hep-ph/9904417 ADSCrossRefGoogle Scholar
  42. 42.
    J. Guasch, W. Hollik, J. Solà, J. High Energy Phys. 0210, 040 (2002). arXiv:hep-ph/0207364 ADSCrossRefGoogle Scholar
  43. 43.
    J. Guasch, W. Hollik, J. Solà, Nucl. Phys. B, Proc. Suppl. 116, 301 (2003). arXiv:hep-ph/0210118 ADSCrossRefGoogle Scholar
  44. 44.
    J. Guasch, S. Peñaranda, R. Sánchez-Florit, J. High Energy Phys. 0904, 016 (2009). arXiv:0812.1114 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    K.-i. Hikasa, M. Kobayashi, Phys. Rev. D 36, 724 (1987) ADSCrossRefGoogle Scholar
  46. 46.
    T. Han, K.-i. Hikasa, J.M. Yang, X.-m. Zhang, Phys. Rev. D 70, 055001 (2004). arXiv:hep-ph/0312129 ADSCrossRefGoogle Scholar
  47. 47.
    F. del Aguila et al., Eur. Phys. J. C 57, 183–308 (2008). arXiv:0801.1800 [hep-ph] ADSCrossRefGoogle Scholar
  48. 48.
    M. Muhlleitner, E. Popenda, J. High Energy Phys. 1104, 095 (2011). arXiv:1102.5712 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    W. Porod, T. Wohrmann, Phys. Rev. D 55, 2907–2917 (1997) [Erratum: Phys. Rev. D 67, 059902 (2003)]. arXiv:hep-ph/9608472 ADSCrossRefGoogle Scholar
  50. 50.
    W. Porod, Phys. Rev. D 59, 095009 (1999). arXiv:hep-ph/9812230 ADSCrossRefGoogle Scholar
  51. 51.
    C. Boehm, A. Djouadi, Y. Mambrini, Phys. Rev. D 61, 095006 (2000). arXiv:hep-ph/9907428 ADSCrossRefGoogle Scholar
  52. 52.
    A. Djouadi, Y. Mambrini, Phys. Lett. B 493, 120–126 (2000). arXiv:hep-ph/0007174 ADSCrossRefGoogle Scholar
  53. 53.
    S.P. Das, A. Datta, M. Guchait, Phys. Rev. D 65, 095006 (2002). arXiv:hep-ph/0112182 ADSCrossRefGoogle Scholar
  54. 54.
    A. Djouadi, Y. Mambrini, Phys. Rev. D 63, 115005 (2001). arXiv:hep-ph/0011364 ADSCrossRefGoogle Scholar
  55. 55.
    K.-I. Hikasa, Y. Nakamura, Z. Phys. C 70, 139–144 (1996) [Erratum: Z. Phys. C 71, 356 (1996)]. arXiv:hep-ph/9501382 CrossRefGoogle Scholar
  56. 56.
    S. Kraml, H. Eberl, A. Bartl, W. Majerotto, W. Porod, Phys. Lett. B 386, 175–182 (1996). arXiv:hep-ph/9605412 ADSCrossRefGoogle Scholar
  57. 57.
    A. Djouadi, W. Hollik, C. Junger, Phys. Rev. D 55, 6975–6985 (1997). arXiv:hep-ph/9609419 ADSCrossRefGoogle Scholar
  58. 58.
    J. Guasch, W. Hollik, J. Solà, Phys. Lett. B 437, 88–99 (1998). arXiv:hep-ph/9802329 ADSCrossRefGoogle Scholar
  59. 59.
    J. Guasch, W. Hollik, J. Solà, Phys. Lett. B 510, 211–220 (2001). arXiv:hep-ph/0101086 ADSCrossRefGoogle Scholar
  60. 60.
    T. Stelzer, W.F. Long, Comput. Phys. Commun. 81, 357–371 (1994). arXiv:hep-ph/9401258 ADSCrossRefGoogle Scholar
  61. 61.
    J. Alwall et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    J. Alwall et al., J. High Energy Phys. 1106, 128 (2011). arXiv:1106.0522 [hep-ph] ADSCrossRefGoogle Scholar
  63. 63.
    G.C. Cho et al., Phys. Rev. D 73, 054002 (2006). arXiv:hep-ph/0601063 ADSCrossRefGoogle Scholar
  64. 64.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54–68 (2002). arXiv:hep-ph/0105349 ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    J.M. Frere, D.R.T. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983) ADSCrossRefGoogle Scholar
  66. 66.
    M. Claudson, L.J. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983) ADSCrossRefGoogle Scholar
  67. 67.
    C. Kounnas, A.B. Lahanas, D.V. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984) ADSCrossRefGoogle Scholar
  68. 68.
    J.F. Gunion, H.E. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988) ADSCrossRefGoogle Scholar
  69. 69.
  70. 70.
    H. Hlucha, H. Eberl, W. Frisch, Comput. Phys. Commun. 183, 2307–2312 (2012). arXiv:1104.2151 [hep-ph] ADSCrossRefGoogle Scholar
  71. 71.
    J. Alwall et al., AIP Conf. Proc. 1078, 84–89 (2009). arXiv:0809.2410 [hep-ph] ADSGoogle Scholar
  72. 72.
    P.Z. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123 [hep-ph] ADSCrossRefGoogle Scholar
  73. 73.
    T. Hahn, Comput. Phys. Commun. 140, 418–431 (2001). arXiv:hep-ph/0012260 ADSzbMATHCrossRefGoogle Scholar
  74. 74.
    T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  75. 75.
    M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  76. 76.
    B.C. Allanach et al., Eur. Phys. J. C 25, 113–123 (2002) [eConf C010630, P125 (2001)], see also http://www.ippp.dur.ac.uk/~georg/sps/sps.html. arXiv:hep-ph/0202233 ADSCrossRefGoogle Scholar
  77. 77.
    M.J. Dolan, D. Grellscheid, J. Jaeckel, V.V. Khoze, P. Richardson, J. High Energy Phys. 1106, 095 (2011). arXiv:1104.0585 [hep-ph] ADSCrossRefGoogle Scholar
  78. 78.
    S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph] ADSCrossRefGoogle Scholar
  79. 79.
    W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B 515, 3–14 (1998). arXiv:hep-ph/9710451 ADSCrossRefGoogle Scholar
  80. 80.
    W. Beenakker et al., J. High Energy Phys. 1008, 098 (2010). arXiv:1006.4771 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Arian Abrahantes
    • 1
  • Jaume Guasch
    • 2
  • Siannah Peñaranda
    • 1
    • 2
    Email author
  • Raül Sánchez-Florit
    • 3
  1. 1.Departamento de Física Teórica, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Departament de Física Fonamental, Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departament d’Estructura i Constituents de la Matèria, Institut de Ciències del CosmosUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations