MSSM interpretations of the LHC discovery: light or heavy Higgs?

  • P. Bechtle
  • S. Heinemeyer
  • O. Stål
  • T. Stefaniak
  • G. Weiglein
  • L. Zeune
Regular Article - Theoretical Physics

Abstract

A Higgs-like particle with a mass of about 126 GeV has been discovered at the LHC. Within the experimental uncertainties, the measured properties of this new state are compatible with those of the Higgs boson in the Standard Model (SM). While not statistically significant at present, the results show some interesting patterns of deviations from the SM predictions, in particular a higher rate in the γγ decay mode observed by ATLAS and CMS, and a somewhat smaller rate in the τ+τ mode. The LHC discovery is also compatible with the predictions of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), interpreting the new state as either the light or the heavy \(\mathcal{CP}\)-even MSSM Higgs boson. Within the framework of the MSSM with seven free parameters (pMSSM-7), we fit the various rates of cross section times branching ratio as measured by the LHC and Tevatron experiments under the hypotheses of either the light or the heavy \(\mathcal{CP}\)-even Higgs boson being the new state around 126 GeV, with and without the inclusion of further low-energy observables. We find an overall good quality of the fits, with the best fit points exhibiting an enhancement of the γγ rate, as well as a small suppression of the \(b \bar{b}\) and τ+τ channels with respect to their SM expectations, depending on the details of the fit. For the fits including the whole dataset the light \(\mathcal{CP}\)-even Higgs interpretation in the MSSM results in a higher relative fit probability than the SM fit. On the other hand, we find that the present data also permit the more exotic interpretation in terms of the heavy \(\mathcal{CP}\)-even MSSM Higgs, which could give rise to experimental signatures of additional Higgs states in the near future.

Notes

Acknowledgements

This work has been supported by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. It has also been partially funded by the Helmholtz Alliance “Physics at the Terascale”. The work of S.H. was partially supported by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. The research of O.S. is supported by the Swedish Research Council (VR) through the Oskar Klein Centre.

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 ADSCrossRefGoogle Scholar
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 ADSCrossRefGoogle Scholar
  3. 3.
    TEVNPH Working Group for the CDF, DØ Collaborations, arXiv:1207.0449
  4. 4.
    ATLAS Collaboration, ATLAS-CONF-2012-091 Google Scholar
  5. 5.
    CMS Collaboration, CMS-HIG-12-015 Google Scholar
  6. 6.
    ATLAS Collaboration, ATLAS-CONF-2012-093 Google Scholar
  7. 7.
    CMS Collaboration, CMS-HIG-12-020 Google Scholar
  8. 8.
    J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83–91 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1–6 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815–1818 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    A. Brignole, Phys. Lett. B 281, 284–294 (1992) ADSCrossRefGoogle Scholar
  12. 12.
    P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 286, 307–314 (1992) ADSCrossRefGoogle Scholar
  13. 13.
    P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 437–496 (1994). hep-ph/9303309 ADSCrossRefGoogle Scholar
  14. 14.
    A. Dabelstein, Z. Phys. C 67, 495–512 (1995). hep-ph/9409375 ADSCrossRefGoogle Scholar
  15. 15.
    A. Dabelstein, Nucl. Phys. B 456, 25–56 (1995). hep-ph/9503443 ADSCrossRefGoogle Scholar
  16. 16.
    A. Djouadi, Phys. Rep. 459, 1–241 (2008). hep-ph/0503173 ADSCrossRefGoogle Scholar
  17. 17.
    S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659–2772 (2006). hep-ph/0407244 ADSCrossRefMATHGoogle Scholar
  18. 18.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265–368 (2006). hep-ph/0412214 ADSCrossRefGoogle Scholar
  19. 19.
    S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201–206 (2012). arXiv:1112.3026 ADSCrossRefGoogle Scholar
  20. 20.
    R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune, Eur. Phys. J. C 72, 2171 (2012). arXiv:1207.1096 ADSCrossRefGoogle Scholar
  21. 21.
    L.J. Hall, D. Pinner, J.T. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703 ADSCrossRefGoogle Scholar
  22. 22.
    H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 ADSCrossRefGoogle Scholar
  23. 23.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162–169 (2012). arXiv:1112.3028 ADSCrossRefGoogle Scholar
  24. 24.
    P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 ADSCrossRefGoogle Scholar
  25. 25.
    M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 ADSCrossRefGoogle Scholar
  26. 26.
    J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665–670 (2012). arXiv:1112.4391 ADSCrossRefGoogle Scholar
  27. 27.
    F. Brümmer, W. Buchmüller, J. High Energy Phys. 1205, 006 (2012). arXiv:1201.4338 ADSCrossRefGoogle Scholar
  28. 28.
    J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262 ADSCrossRefGoogle Scholar
  29. 29.
    N. Desai, B. Mukhopadhyaya, S. Niyogi, arXiv:1202.5190
  30. 30.
    T. Cheng, J. Li, T. Li, D.V. Nanopoulos, C. Tong, arXiv:1202.6088
  31. 31.
    M. Asano, S. Matsumoto, M. Senami, H. Sugiyama, Phys. Rev. D 86, 015020 (2012). arXiv:1202.6318 ADSCrossRefGoogle Scholar
  32. 32.
    J.-J. Cao, Z. Heng, J.M. Yang, J. Zhu, J. High Energy Phys. 1206, 145 (2012). arXiv:1203.0694 ADSCrossRefGoogle Scholar
  33. 33.
    A. Choudhury, A. Datta, J. High Energy Phys. 1206, 006 (2012). arXiv:1203.4106 ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi, Phys. Lett. B 713, 462–468 (2012). arXiv:1204.2856 ADSCrossRefGoogle Scholar
  35. 35.
    F. Brümmer, S. Kraml, S. Kulkarni, J. High Energy Phys. 1208, 089 (2012). arXiv:1204.5977 ADSCrossRefGoogle Scholar
  36. 36.
    J.L. Evans, M. Ibe, T.T. Yanagida, Phys. Rev. D 86, 015017 (2012). arXiv:1204.6085 ADSCrossRefGoogle Scholar
  37. 37.
    A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski et al., arXiv:1206.0264
  38. 38.
    M.R. Buckley, D. Hooper, arXiv:1207.1445
  39. 39.
    S. Akula, P. Nath, G. Peim, Phys. Lett. B 717, 188–192 (2012). arXiv:1207.1839 ADSCrossRefGoogle Scholar
  40. 40.
    J. Cao, Z. Heng, J.M. Yang, J. Zhu, J. High Energy Phys. 1210, 079 (2012). arXiv:1207.3698 ADSCrossRefGoogle Scholar
  41. 41.
    M. Hirsch, F. Joaquim, A. Vicente, arXiv:1207.6635
  42. 42.
    O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. Dolan et al., arXiv:1207.7315
  43. 43.
    K. Howe, P. Saraswat, J. High Energy Phys. 1210, 065 (2012). arXiv:1208.1542 ADSCrossRefGoogle Scholar
  44. 44.
    C. Wymant, arXiv:1208.1737
  45. 45.
    Z. Kang, T. Li, J. Li, Y. Liu, arXiv:1208.2673
  46. 46.
    T. Kitahara, arXiv:1208.4792
  47. 47.
    Z. Heng, arXiv:1210.3751
  48. 48.
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner, L.-T. Wang, J. High Energy Phys. 1207, 175 (2012). arXiv:1205.5842 ADSCrossRefGoogle Scholar
  49. 49.
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336 ADSCrossRefGoogle Scholar
  50. 50.
    U. Haisch, F. Mahmoudi, arXiv:1210.7806
  51. 51.
    M. Drees, arXiv:1210.6507
  52. 52.
    J. Espinosa, C. Grojean, M. Mühlleitner, M. Trott, J. High Energy Phys. 1212, 045 (2012). arXiv:1207.1717 ADSCrossRefGoogle Scholar
  53. 53.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. High Energy Phys. 1207, 136 (2012). arXiv:1202.3144 ADSCrossRefGoogle Scholar
  54. 54.
    A. Azatov, R. Contino, J. Galloway, J. High Energy Phys. 1204, 127 (2012). arXiv:1202.3415 ADSCrossRefGoogle Scholar
  55. 55.
    P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, J. High Energy Phys. 1206, 117 (2012). arXiv:1203.4254 ADSCrossRefGoogle Scholar
  56. 56.
    M. Klute, R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, Phys. Rev. Lett. 109, 101801 (2012). arXiv:1205.2699 ADSCrossRefGoogle Scholar
  57. 57.
    A. Azatov, S. Chang, N. Craig, J. Galloway, Phys. Rev. D 86, 075033 (2012). arXiv:1206.1058 ADSCrossRefGoogle Scholar
  58. 58.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, arXiv:1206.4201
  59. 59.
    I. Low, J. Lykken, G. Shaughnessy, Phys. Rev. D 86, 093012 (2012). arXiv:1207.1093 ADSCrossRefGoogle Scholar
  60. 60.
    T. Corbett, O. Eboli, J. Gonzalez-Fraile, M. Gonzalez-Garcia, Phys. Rev. D 86, 075013 (2012). arXiv:1207.1344 ADSCrossRefGoogle Scholar
  61. 61.
    P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, Phys. Lett. B 718, 469–474 (2012). arXiv:1207.1347 ADSCrossRefGoogle Scholar
  62. 62.
    J. Ellis, T. You, J. High Energy Phys. 1209, 123 (2012). arXiv:1207.1693 ADSCrossRefGoogle Scholar
  63. 63.
    M. Montull, F. Riva, J. High Energy Phys. 1211, 018 (2012). arXiv:1207.1716 ADSCrossRefGoogle Scholar
  64. 64.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, J. High Energy Phys. 1210, 196 (2012). arXiv:1207.1718 ADSCrossRefGoogle Scholar
  65. 65.
    S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya, J. High Energy Phys. 1210, 062 (2012). arXiv:1207.3588 ADSCrossRefGoogle Scholar
  66. 66.
    F. Bonnet, T. Ota, M. Rauch, W. Winter, Phys. Rev. D 86, 093014 (2012). arXiv:1207.4599 ADSCrossRefGoogle Scholar
  67. 67.
    T. Plehn, M. Rauch, Europhys. Lett. 100, 11002 (2012). arXiv:1207.6108 CrossRefGoogle Scholar
  68. 68.
    J.R. Espinosa, C. Grojean, V. Sanz, M. Trott, J. High Energy Phys. 1212, 077 (2012). arXiv:1207.7355 ADSCrossRefGoogle Scholar
  69. 69.
    A. Djouadi, arXiv:1208.3436
  70. 70.
    W. Altmannshofer, S. Gori, G.D. Kribs, Phys. Rev. D 86, 115009 (2012). arXiv:1210.2465 ADSCrossRefGoogle Scholar
  71. 71.
    B.A. Dobrescu, J.D. Lykken, arXiv:1210.3342
  72. 72.
    S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park et al., arXiv:1210.3439
  73. 73.
    G. Cacciapaglia, A. Deandrea, G.D. La Rochelle, J.-B. Flament, arXiv:1210.8120
  74. 74.
    A. David et al. (LHC Higgs Cross Section Working Group), arXiv:1209.0040
  75. 75.
    S. Schael et al. (ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration OPAL Collaborations), Eur. Phys. J. C 47, 547–587 (2006). hep-ex/0602042 ADSCrossRefGoogle Scholar
  76. 76.
    D. Benjamin et al. (TEVNPH Working Group), arXiv:1003.3363
  77. 77.
    T. Aaltonen, et al. (CDF and D0 Collaborations), arXiv:1207.2757
  78. 78.
    ATLAS Collaboration ATLAS-CONF-2012-094 Google Scholar
  79. 79.
    CMS Collaboration CMS-PAS-HIG-11-029 Google Scholar
  80. 80.
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, hep-ph/9912223
  81. 81.
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, Eur. Phys. J. C 26, 601–607 (2003). hep-ph/0202167 ADSCrossRefGoogle Scholar
  82. 82.
    M.S. Carena, S. Heinemeyer, C. Wagner, G. Weiglein, Eur. Phys. J. C 45, 797–814 (2006). hep-ph/0511023 ADSCrossRefGoogle Scholar
  83. 83.
    A. Arbey, M. Battaglia, F. Mahmoudi, Eur. Phys. J. C 72, 2169 (2012). arXiv:1205.2557 ADSCrossRefGoogle Scholar
  84. 84.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. High Energy Phys. 1209, 107 (2012). arXiv:1207.1348 ADSCrossRefGoogle Scholar
  85. 85.
    S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 ADSCrossRefGoogle Scholar
  86. 86.
    J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012) ADSCrossRefGoogle Scholar
  87. 87.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). hep-ph/9812472 ADSGoogle Scholar
  88. 88.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). hep-ph/9812320 ADSCrossRefMATHGoogle Scholar
  89. 89.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). hep-ph/0212020 ADSCrossRefGoogle Scholar
  90. 90.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., J. High Energy Phys. 0702, 047 (2007). hep-ph/0611326 ADSCrossRefGoogle Scholar
  91. 91.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 ADSCrossRefMATHGoogle Scholar
  92. 92.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898 ADSCrossRefGoogle Scholar
  93. 93.
    ATLAS Collaboration, ATLAS-CONF-2012-012 Google Scholar
  94. 94.
    ATLAS Collaboration, ATLAS-CONF-2012-098 Google Scholar
  95. 95.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 032003 (2012). arXiv:1207.0319 ADSCrossRefGoogle Scholar
  96. 96.
    ATLAS Collaboration ATLAS-CONF-2012-092 Google Scholar
  97. 97.
    S. Dittmaier et al. (LHC Higgs Cross Section Working Group), arXiv:1101.0593
  98. 98.
    S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka et al., arXiv:1201.3084
  99. 99.
  100. 100.
    D. de Florian, M. Grazzini, Phys. Lett. B 674, 291–294 (2009). arXiv:0901.2427 ADSCrossRefGoogle Scholar
  101. 101.
  102. 102.
    T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein, S. Willenbrock, hep-ph/0607308
  103. 103.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Nucl. Phys. B, Proc. Suppl. 205–206, 152–157 (2010). arXiv:1007.0956 CrossRefGoogle Scholar
  104. 104.
    R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 0711, 095 (2007). arXiv:0709.4227 ADSCrossRefGoogle Scholar
  105. 105.
    U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 0701, 021 (2007). hep-ph/0611266 ADSCrossRefGoogle Scholar
  106. 106.
    A. Dedes, P. Slavich, Nucl. Phys. B 657, 333–354 (2003). hep-ph/0212132 ADSCrossRefGoogle Scholar
  107. 107.
    A. Dedes, G. Degrassi, P. Slavich, Nucl. Phys. B 672, 144–162 (2003). hep-ph/0305127 ADSCrossRefGoogle Scholar
  108. 108.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139–153 (2000). hep-ph/0003022 ADSCrossRefGoogle Scholar
  109. 109.
    K.E. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335 ADSCrossRefGoogle Scholar
  110. 110.
  111. 111.
    F. Mahmoudi, Comput. Phys. Commun. 178, 745–754 (2008). arXiv:0710.2067 ADSCrossRefMATHGoogle Scholar
  112. 112.
    F. Mahmoudi, Comput. Phys. Commun. 180, 1579–1613 (2009). arXiv:0808.3144 ADSCrossRefGoogle Scholar
  113. 113.
    F. Mahmoudi, Comput. Phys. Commun. 180, 1718–1719 (2009) ADSCrossRefGoogle Scholar
  114. 114.
    M. Misiak, M. Steinhauser, Nucl. Phys. B 764, 62–82 (2007). hep-ph/0609241 ADSCrossRefGoogle Scholar
  115. 115.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, arXiv:1210.7184
  116. 116.
    G. Degrassi, G. Giudice, Phys. Rev. D 58, 053007 (1998). hep-ph/9803384 ADSCrossRefGoogle Scholar
  117. 117.
    S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 690, 62–80 (2004). hep-ph/0312264 ADSCrossRefMATHGoogle Scholar
  118. 118.
    S. Heinemeyer, D. Stöckinger, G. Weiglein, Nucl. Phys. B 699, 103–123 (2004). hep-ph/0405255 ADSCrossRefMATHGoogle Scholar
  119. 119.
    D. Stöckinger, J. Phys. G 34, R45–R92 (2007). hep-ph/0609168 ADSCrossRefGoogle Scholar
  120. 120.
    Tevatron Electroweak Working Group for the CDF Collaboration, DØ Collaboration, arXiv:1204.0042
  121. 121.
  122. 122.
    M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69, 053006 (2004). hep-ph/0311148 ADSCrossRefGoogle Scholar
  123. 123.
    A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Junger et al., Phys. Rev. Lett. 78, 3626–3629 (1997). hep-ph/9612363 ADSCrossRefGoogle Scholar
  124. 124.
    A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Junger et al., Phys. Rev. D 57, 4179–4196 (1998). hep-ph/9710438 ADSCrossRefGoogle Scholar
  125. 125.
    S. Heinemeyer, W. Hollik, D. Stöckinger, A. Weber, G. Weiglein, J. High Energy Phys. 0608, 052 (2006). hep-ph/0604147 ADSCrossRefGoogle Scholar
  126. 126.
    G. Weiglein, L. Zeune, In preparation Google Scholar
  127. 127.
    Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158
  128. 128.
    LHCb Collaboration, LHCb-CONF-2012-017 Google Scholar
  129. 129.
    CMS Collaboration, CMS-PAS-BPH-12-009 Google Scholar
  130. 130.
    ATLAS Collaboration, ATLAS-CONF-2012-061 Google Scholar
  131. 131.
    M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180 ADSCrossRefGoogle Scholar
  132. 132.
    G. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). hep-ex/0401008 ADSCrossRefGoogle Scholar
  133. 133.
    G. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). hep-ex/0602035 ADSCrossRefGoogle Scholar
  134. 134.
    S. Gennai, S. Heinemeyer, A. Kalinowski, R. Kinnunen, S. Lehti et al., Eur. Phys. J. C 52, 383–395 (2007). arXiv:0704.0619 ADSCrossRefGoogle Scholar
  135. 135.
    G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 1206, 039 (2012). arXiv:1204.2760 ADSCrossRefGoogle Scholar
  136. 136.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1207, 143 (2012). arXiv:1205.5736 ADSCrossRefGoogle Scholar
  137. 137.
    J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983) ADSCrossRefGoogle Scholar
  138. 138.
    M. Claudson, L.J. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983) ADSCrossRefGoogle Scholar
  139. 139.
    C. Kounnas, A. Lahanas, D.V. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984) ADSCrossRefGoogle Scholar
  140. 140.
    J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988) ADSCrossRefGoogle Scholar
  141. 141.
    J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3–58 (1996). hep-ph/9507294 ADSCrossRefGoogle Scholar
  142. 142.
    P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199–2217 (1994). hep-ph/9403306 ADSCrossRefGoogle Scholar
  143. 143.
    A. Strumia, Nucl. Phys. B 482, 24–38 (1996). hep-ph/9604417 ADSCrossRefGoogle Scholar
  144. 144.
    R. Hempfling, Phys. Rev. D 49, 6168–6172 (1994) ADSCrossRefGoogle Scholar
  145. 145.
    L.J. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048–7065 (1994). hep-ph/9306309 ADSCrossRefGoogle Scholar
  146. 146.
    M.S. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269–300 (1994). hep-ph/9402253 ADSCrossRefGoogle Scholar
  147. 147.
    M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Nucl. Phys. B 577, 88–120 (2000). hep-ph/9912516 ADSCrossRefGoogle Scholar
  148. 148.
    D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 ADSCrossRefGoogle Scholar
  149. 149.
    ATLAS Collaboration, Contribution to the ESPP2012, ATL-PHYS-PUB-2012-004, http://indico.cern.ch/contributionDisplay.py?contribId=174&confId=175067
  150. 150.
  151. 151.
    J.E. Brau, R.M. Godbole, F.R.L. Diberder, M. Thomson, H. Weerts et al., arXiv:1210.0202
  152. 152.
    S. Berge, W. Bernreuther, J. Ziethe, Phys. Rev. Lett. 100, 171605 (2008). arXiv:0801.2297 ADSCrossRefGoogle Scholar
  153. 153.
    S. Berge, W. Bernreuther, B. Niepelt, H. Spiesberger, Phys. Rev. D 84, 116003 (2011). arXiv:1108.0670 ADSCrossRefGoogle Scholar
  154. 154.
    G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47–358 (2006). hep-ph/0410364 ADSCrossRefGoogle Scholar
  155. 155.
    K. Desch, E. Gross, S. Heinemeyer, G. Weiglein, L. Zivkovic, J. High Energy Phys. 0409, 062 (2004). hep-ph/0406322 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • P. Bechtle
    • 1
  • S. Heinemeyer
    • 2
  • O. Stål
    • 3
  • T. Stefaniak
    • 1
  • G. Weiglein
    • 4
  • L. Zeune
    • 4
  1. 1.Physikalisches Institut der Universität BonnBonnGermany
  2. 2.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  3. 3.The Oskar Klein Centre, Department of PhysicsStockholm UniversityStockholmSweden
  4. 4.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations