Dark radiation and dark matter coupled to holographic Ricci dark energy

  • Luis P. Chimento
  • Martín G. RicharteEmail author
Regular Article - Theoretical Physics


We investigate a universe filled with interacting dark matter, holographic dark energy, and dark radiation for the spatially flat Friedmann–Robertson–Walker (FRW) spacetime. We use a linear interaction to reconstruct all the component energy densities in terms of the scale factor by directly solving the balance’s equations along with the source equation. We apply the χ 2 method to the observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our model exhibits an excess of dark energy in the recombination era whereas the stringent bound Ω x (z≃1010)<0.21 at big-bang nucleosynthesis is fulfilled. We find that the interaction provides a physical mechanism for alleviating the triple cosmic coincidence and this leads to \(\varOmega_{m0}/\varOmega_{x0} \simeq\varOmega_{r0}/\varOmega_{x0} \simeq\mathcal{O}(1)\).


Dark Matter Dark Energy Holographic Dark Energy Dark Sector Dark Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



L.P.C. thanks the University of Buenos Aires under Project No. 20020100100147 and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) under Project PIP 114-200801-00328 for the partial support of this work during their different stages. M.G.R. is partially supported by Postdoctoral Fellowship programme of CONICET.


  1. 1.
    Y. Wang, Dark Energy (Wiley-VCH, Berlin, 2010). ISBN 978-3-527-40941-9 CrossRefGoogle Scholar
  2. 2.
    P. Ruiz-Lapuente (ed.), Dark Energy: Observational and Theoretical Approaches (Cambridge University Press, Cambridge, 2010) Google Scholar
  3. 3.
    D. Clowe et al., Astrophys. J. Lett. 648, L109 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    M. Bradac et al., Astrophys. J. 687, 959 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    R.W. Schnee, arXiv:1101.5205
  6. 6.
    A.G. Riess et al., Astron. J. 116, 1009 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    A.G. Riess et al., Astrophys. J. 607, 665 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    E. Jullo, P. Natarajan, J.P. Kneib, A. d’Aloisio, M. Limousin, J. Richard, C. Schimd, Science 329(5994), 924–927 (2010). arXiv:1008.4802 ADSCrossRefGoogle Scholar
  12. 12.
    L.P. Chimento, Phys. Rev. D 81, 043525 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    L.P. Chimento, M.G. Richarte, Phys. Rev. D 84, 123507 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    L.P. Chimento, M.G. Richarte, Phys. Rev. D 85, 127301 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    L.P. Chimento, M.G. Richarte, Phys. Rev. D 86, 103501 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    N. Arkani-Hamed, L.J. Hall, C. Kolda, H. Murayama, Phys. Rev. Lett. 85, 4434–4437 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    M. Moresco, L. Verde, L. Pozzetti, R. Jimenez, A. Cimatti, J. Cosmol. Astropart. Phys. 1207, 053 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    R. Amanullah et al., Astrophys. J. 716, 712 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    E. Calabrese, D. Huterer, E.V. Linder, A. Melchiorri, L. Pagano, Phys. Rev. D 83, 123504 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    R.H. Cyburt, B.D. Fields, K.A. Olive, E. Skillman, Astropart. Phys. 23, 313 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005). astro-ph/0412269 ADSCrossRefGoogle Scholar
  22. 22.
    L. Samushia, B. Ratra, Astrophys. J. 650, L5 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    D. Stern et al., arXiv:0907.3149
  24. 24.
    W.H. Press et al., Numerical Recipes in C (Cambridge University Press, Cambridge, 1997) Google Scholar
  25. 25.
    A.G. Riess et al., Astrophys. J. 699, 539 (2009). arXiv:0905.0695 ADSCrossRefGoogle Scholar
  26. 26.
    E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO]
  27. 27.
    D.S. Sivia, J. Skilling, Data Analysis: a Bayesian Tutorial (Oxford University Press, London, 2006) zbMATHGoogle Scholar
  28. 28.
    J. Lu, L. Xu, M. Liu, Phys. Lett. B 699, 246 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    M.I. Forte, M.G. Richarte, arXiv:1206.1073
  30. 30.
    L.P. Chimento, M.I. Forte, M.G. Richarte, arXiv:1206.0179
  31. 31.
    L.P. Chimento, M. Forte, M.G. Richarte, arXiv:1106.0781
  32. 32.
    L.P. Chimento, M.G. Richarte, arXiv:1207.1121
  33. 33.
    J.A.S. Lima, J.F. Jesus, R.C. Santos, M.S.S. Gill, arXiv:1205.4688
  34. 34.
    G. Kremer, Gen. Relativ. Gravit. 39, 965–972 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires and IFIBA, CONICETBuenos AiresArgentina

Personalised recommendations