Advertisement

A higgs-like dilaton

  • Brando BellazziniEmail author
  • Csaba Csáki
  • Jay Hubisz
  • Javi Serra
  • John Terning
Regular Article - Theoretical Physics

Abstract

We examine the possibility that the recently discovered 125 GeV higgs-like resonance actually corresponds to a dilaton: the Goldstone boson of scale invariance spontaneously broken at a scale f. Comparing to LHC data we find that a dilaton can reproduce the observed couplings of the new resonance as long as fv, the weak scale. This corresponds to the dynamical assumption that only operators charged under the electroweak gauge group obtain VEVs. The more difficult task is to keep the mass of the dilaton light compared to the dynamical scale, Λ∼4πf, of the theory. In generic, non-supersymmetric theories one would expect the dilaton mass to be similar to Λ. The mass of the dilaton can only be lowered at the price of some percent level (or worse) tuning and/or additional dynamical assumptions: one needs to suppress the contribution of the condensate to the vacuum energy (which would lead to a large dilaton quartic coupling), and to allow only almost marginal deformations of the CFT.

Keywords

Anomalous Dimension Composite Sector Strong Sector Dilaton Coupling Explicit Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Matt Reece for stimulating conversations about the dilaton mass. We also thank Kaustubh Agashe, Zohar Komargodski and Alex Pomarol for useful discussions. We thank Zackaria Chacko for informing us of his upcoming paper on this subject. We thank the Aspen Center for Physics for its hospitality while this work was in progress. B.B. is supported in part by the ERC Advanced Grant no.267985, “Electroweak Symmetry Breaking, Flavour and Dark Matter: One Solution for Three Mysteries” (DaMeSyFla), and by the MIUR-FIRB grant RBFR12H1MW. C.C. and J.S. are supported in part by the NSF grant PHY-0757868. J.H. thanks Cornell University for hospitality during the course of this work. J.H. is supported in part by DOE grant number DE-FG02-85ER40237. J.T. was supported by the Department of Energy under grant DE-FG02-91ER406746.

References

  1. 1.
    S. Chatrchyan et al. (CMS Collaboration), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    G. Aad et al. (ATLAS Collaboration), Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, A phenomenological profile of the Higgs boson. Nucl. Phys. B 106, 292 (1976) ADSGoogle Scholar
  4. 4.
    K. Yamawaki, M. Bando, K. Matumoto, Scale invariant technicolor model and a technidilaton. Phys. Rev. Lett. 56, 1335 (1986) ADSCrossRefGoogle Scholar
  5. 5.
    M. Bando, K. Matumoto, K. Yamawaki, Technidilaton. Phys. Lett. B 178, 308 (1986) ADSCrossRefGoogle Scholar
  6. 6.
    W.A. Bardeen, C.N. Leung, S.T. Love, The dilaton and chiral symmetry breaking. Phys. Rev. Lett. 56, 1230 (1986) ADSCrossRefGoogle Scholar
  7. 7.
    C.N. Leung, S.T. Love, W.A. Bardeen, Spontaneous symmetry breaking in scale invariant quantum electrodynamics. Nucl. Phys. B 273, 649 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    T.E. Clark, C.N. Leung, S.T. Love, Properties of the dilaton. Phys. Rev. D 35, 997 (1987) ADSCrossRefGoogle Scholar
  9. 9.
    G.V. Dzhikiya, The dilaton as the analog of the Higgs boson in composite models. Sov. J. Nucl. Phys. 45, 1083 (1987). [Yad. Fiz. 45, 1750 (1987)] Google Scholar
  10. 10.
    T. Appelquist, Y. Bai, A light dilaton in walking gauge theories. Phys. Rev. D 82, 071701 (2010). arXiv:1006.4375 [hep-ph] ADSCrossRefGoogle Scholar
  11. 11.
    B. Grinstein, P. Uttayarat, A very light dilaton. J. High Energy Phys. 1107, 038 (2011). arXiv:1105.2370 [hep-ph] ADSCrossRefGoogle Scholar
  12. 12.
    S. Matsuzaki, K. Yamawaki, Techni-dilaton at 125 GeV. arXiv:1201.4722 [hep-ph]
  13. 13.
    C. Csaki, J. Hubisz, S.J. Lee, Radion phenomenology in realistic warped space models. Phys. Rev. D 76, 125015 (2007). arXiv:0705.3844 [hep-ph] ADSCrossRefGoogle Scholar
  14. 14.
    W.D. Goldberger, B. Grinstein, W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider. Phys. Rev. Lett. 100, 111802 (2008). arXiv:0708.1463 [hep-ph] ADSCrossRefGoogle Scholar
  15. 15.
    J. Fan, W.D. Goldberger, A. Ross, W. Skiba, Standard model couplings and collider signatures of a light scalar. Phys. Rev. D 79, 035017 (2009). arXiv:0803.2040 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    L. Vecchi, Phenomenology of a light scalar: the dilaton. Phys. Rev. D 82, 076009 (2010). arXiv:1002.1721 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    V. Barger, M. Ishida, W.-Y. Keung, Differentiating the Higgs boson from the dilaton and the radion at hadron colliders. Phys. Rev. Lett. 108, 101802 (2012). arXiv:1111.4473 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    M.G. Ryskin, A.G. Shuvaev, Higgs boson as a dilaton. Phys. At. Nucl. 73, 965 (2010). arXiv:0909.3374 [hep-ph] CrossRefGoogle Scholar
  19. 19.
    R. Foot, A. Kobakhidze, K.L. McDonald, Dilaton as the Higgs boson. Eur. Phys. J. C 68, 421 (2010). arXiv:0812.1604 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    B.A. Campbell, J. Ellis, K.A. Olive, Phenomenology and cosmology of an electroweak pseudo-dilaton and electroweak baryons. J. High Energy Phys. 1203, 026 (2012). arXiv:1111.4495 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    B. Coleppa, T. Gregoire, H.E. Logan, Dilaton constraints and LHC prospects. Phys. Rev. D 85, 055001 (2012). arXiv:1111.3276 [hep-ph] ADSCrossRefGoogle Scholar
  22. 22.
    D. Elander, M. Piai, The decay constant of the holographic techni-dilaton and the 125 GeV boson. arXiv:1208.0546 [hep-ph]
  23. 23.
    I. Low, J. Lykken, G. Shaughnessy, Have we observed the Higgs (Imposter)? Phys. Rev. D 86, 093012 (2012). arXiv:1207.1093 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, Is the resonance at 125 GeV the Higgs boson? arXiv:1207.1347 [hep-ph]
  25. 25.
    M. Montull, F. Riva, Higgs discovery: the beginning or the end of natural Ewsb? J. High Energy Phys. 1211, 018 (2012). arXiv:1207.1716 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    J. Ellis, T. You, Global analysis of the Higgs candidate with mass 125 GeV. arXiv:1207.1693 [hep-ph]
  27. 27.
    D.B. Kaplan, Flavor at Ssc energies: a new mechanism for dynamically generated fermion masses. Nucl. Phys. B 365, 259 (1991) ADSCrossRefGoogle Scholar
  28. 28.
    K. Agashe, A. Delgado, M.J. May, R. Sundrum, RS1, custodial isospin and precision tests. J. High Energy Phys. 0308, 050 (2003). arXiv:hep-ph/0308036 ADSCrossRefGoogle Scholar
  29. 29.
    B. Holdom, J. Terning, A light dilaton in gauge theories? Phys. Lett. B 187, 357 (1987) ADSCrossRefGoogle Scholar
  30. 30.
    B. Holdom, J. Terning, No light dilaton in gauge theories. Phys. Lett. B 200, 338 (1988) ADSCrossRefGoogle Scholar
  31. 31.
    D. Kutasov, J. Lin, A. Parnachev, Conformal phase transitions at weak and strong coupling. Nucl. Phys. B 858, 155 (2012). arXiv:1107.2324 [hep-th] MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    T. Appelquist, J. Terning, L.C.R. Wijewardhana, Postmodern technicolor. Phys. Rev. Lett. 79, 2767 (1997). arXiv:hep-ph/9706238 ADSCrossRefGoogle Scholar
  33. 33.
    W.D. Goldberger, M.B. Wise, Modulus stabilization with bulk fields. Phys. Rev. Lett. 83, 4922 (1999). arXiv:hep-ph/9907447 ADSCrossRefGoogle Scholar
  34. 34.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221 MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    R. Rattazzi, A. Zaffaroni, Comments on the holographic picture of the Randall–Sundrum model. J. High Energy Phys. 0104, 021 (2001). arXiv:hep-th/0012248 MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    S. Coleman, Dilatations, in Aspects of Symmetry (Cambridge University Press, Cambridge, 1985) CrossRefGoogle Scholar
  37. 37.
    Z. Komargodski, A. Schwimmer, On renormalization group flows in four dimensions. J. High Energy Phys. 1112, 099 (2011). arXiv:1107.3987 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    G. Cacciapaglia, G. Marandella, J. Terning, Dimensions of supersymmetric operators from AdS/CFT. J. High Energy Phys. 0906, 027 (2009). arXiv:0802.2946 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    K. Agashe, R. Contino, A. Pomarol, The minimal composite Higgs model. Nucl. Phys. B 719, 165 (2005). arXiv:hep-ph/0412089 ADSCrossRefGoogle Scholar
  40. 40.
    A. Azatov, M. Toharia, L. Zhu, Radion mediated flavor changing neutral currents. Phys. Rev. D 80, 031701 (2009). arXiv:0812.2489 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    M. Bona et al. (UTfit Collaboration), Model-independent constraints on ΔF=2 operators and the scale of new physics. J. High Energy Phys. 0803, 049 (2008). arXiv:0707.0636 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    M. Redi, Composite MFV and beyond. arXiv:1203.4220 [hep-ph]
  43. 43.
    G. Blankenburg, J. Ellis, G. Isidori, Flavour-changing decays of a 125 GeV higgs-like particle. Phys. Lett. B 712, 386 (2012). arXiv:1202.5704 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    R. Harnik, J. Kopp, J. Zupan, Flavor Violating Higgs Decays. arXiv:1209.1397 [hep-ph]
  45. 45.
    O. Domenech, A. Pomarol, J. Serra, Probing the SM with Dijets at the LHC. Phys. Rev. D 85, 074030 (2012). arXiv:1201.6510 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    R. Rattazzi, S. Rychkov, A. Vichi, Central charge bounds in 4D conformal field theory. Phys. Rev. D 83, 046011 (2011). arXiv:1009.2725 [hep-th] ADSCrossRefGoogle Scholar
  47. 47.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, J. Zupan, Higgs after the discovery: a status report. arXiv:1207.1718 [hep-ph]
  48. 48.
    R. Barbieri, B. Bellazzini, V.S. Rychkov, A. Varagnolo, The Higgs boson from an extended symmetry. Phys. Rev. D 76, 115008 (2007). arXiv:0706.0432 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Electroweak symmetry breaking after Lep-1 and Lep-2. Nucl. Phys. B 703, 127 (2004). arXiv:hep-ph/0405040 ADSCrossRefGoogle Scholar
  50. 50.
    A. Azatov, R. Contino, J. Galloway, Model-Independent Bounds on a Light Higgs. arXiv:1202.3415 [hep-ph]
  51. 51.
    M. Frigerio, J. Serra, A. Varagnolo, Composite GUTs: models and expectations at the LHC. J. High Energy Phys. 1106, 029 (2011). arXiv:1103.2997 [hep-ph] ADSCrossRefGoogle Scholar
  52. 52.
    S. Fubini, A new approach to conformal invariant field theories. Nuovo Cimento A 34, 521 (1976) ADSCrossRefGoogle Scholar
  53. 53.
    E. Gildener, S. Weinberg, Symmetry breaking and scalar bosons. Phys. Rev. D 13, 3333 (1976) ADSCrossRefGoogle Scholar
  54. 54.
    S. Kachru, E. Silverstein, 4-d conformal theories and strings on orbifolds. Phys. Rev. Lett. 80, 4855 (1998). arXiv:hep-th/9802183 MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. 55.
    M.R. Douglas, G. Moore, D-branes, quivers, and ALE instantons. arXiv:hep-th/9603167
  56. 56.
    A. Lawrence, N. Nekrasov, C. Vafa, On conformal field theories in four-dimensions. Nucl. Phys. B 533, 199 (1998). arXiv:hep-th/9803015 MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. 57.
    M. Bershadsky, Z. Kakushadze, C. Vafa, String expansion as large N expansion of gauge theories. Nucl. Phys. B 523, 59 (1998). arXiv:hep-th/9803076 MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    M. Bershadsky, A. Johansen, Large N limit of orbifold field theories. Nucl. Phys. B 536, 141 (1998). arXiv:hep-th/9803249 MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    C. Csaki, W. Skiba, J. Terning, Beta functions of orbifold theories and the hierarchy problem. Phys. Rev. D 61, 025019 (2000). arXiv:hep-th/9906057 MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    I. Affleck, M. Dine, N. Seiberg, Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications. Nucl. Phys. B 256, 557 (1985) MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    J. Bagger, E. Poppitz, L. Randall, The R axion from dynamical supersymmetry breaking. Nucl. Phys. B 426, 3 (1994). arXiv:hep-ph/9405345 ADSCrossRefGoogle Scholar
  62. 62.
    C. Csaki, M. Graesser, C.F. Kolda, J. Terning, Cosmology of one extra dimension with localized gravity. Phys. Lett. B 462, 34 (1999). arXiv:hep-ph/9906513 MathSciNetADSzbMATHCrossRefGoogle Scholar
  63. 63.
    K. Agashe, H. Davoudiasl, G. Perez, A. Soni, Warped gravitons at the LHC and beyond. Phys. Rev. D 76, 036006 (2007). arXiv:hep-ph/0701186 ADSCrossRefGoogle Scholar
  64. 64.
    C. Csaki, M.L. Graesser, G.D. Kribs, Radion dynamics and electroweak physics. Phys. Rev. D 63, 065002 (2001). arXiv:hep-th/0008151 ADSCrossRefGoogle Scholar
  65. 65.
    C. Csaki, M. Graesser, L. Randall, J. Terning, Cosmology of brane models with radion stabilization. Phys. Rev. D 62, 045015 (2000). arXiv:hep-ph/9911406 MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    W.D. Goldberger, M.B. Wise, Phenomenology of a stabilized modulus. Phys. Lett. B 475, 275 (2000). arXiv:hep-ph/9911457 ADSCrossRefGoogle Scholar
  67. 67.
    R. Contino, A. Pomarol, R. Rattazzi, talk by R. Rattazzi at Planck 2010, CERN [slides] Google Scholar
  68. 68.
    C. Csaki, C. Grojean, L. Pilo, J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking. Phys. Rev. Lett. 92, 101802 (2004). arXiv:hep-ph/0308038 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2013

Authors and Affiliations

  • Brando Bellazzini
    • 1
    • 2
    Email author
  • Csaba Csáki
    • 3
  • Jay Hubisz
    • 4
  • Javi Serra
    • 3
  • John Terning
    • 5
  1. 1.Dipartimento di Fisica e AstronomiaUniversità di Padova and INFN, Sezione di PadovaPadovaItaly
  2. 2.SISSATriesteItaly
  3. 3.Department of Physics, LEPPCornell UniversityIthacaUSA
  4. 4.Department of PhysicsSyracuse UniversitySyracuseUSA
  5. 5.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations