# Projection operator approach to the quantization of higher spin fields

- 121 Downloads
- 1 Citations

## Abstract

A general method to construct free quantum fields for massive particles of arbitrary definite spin in a canonical Hamiltonian framework is presented. The main idea of the method is as follows: a multicomponent Klein–Gordon field that satisfies canonical (anti)commutation relations and serves as an auxiliary higher spin field is introduced, and the physical higher spin field is obtained by acting on the auxiliary field by a suitable differential operator. This allows the calculation of the (anti)commutation relations, the Green functions and the Feynman propagators of the higher spin fields. In addition, canonical equations of motions, which are expressed in terms of the auxiliary variables, can be obtained also in the presence of interactions, if the interaction Hamiltonian operator is known. The fields considered transform according to the (*n*/2,*m*/2)⊕(*m*/2,*n*/2) and (*n*/2,*m*/2) representations of the Lorentz group.

## Keywords

Gordon Equation Hamiltonian Operator Mode Expansion Anticommutation Relation Dirac Field## References

- 1.P.A.M. Dirac, Proc. R. Soc. A
**155**, 447 (1936) ADSCrossRefGoogle Scholar - 2.M. Fierz, Helv. Phys. Acta
**12**, 3 (1939) CrossRefGoogle Scholar - 3.M. Fierz, W. Pauli, Proc. R. Soc. A
**173**, 211 (1939) MathSciNetADSCrossRefGoogle Scholar - 4.W. Rarita, J. Schwinger, Phys. Rev.
**60**, 61 (1941) ADSzbMATHCrossRefGoogle Scholar - 5.V. Bargmann, E.P. Wigner, Proc. Natl. Acad. Sci. USA
**34**, 211 (1948) MathSciNetADSzbMATHCrossRefGoogle Scholar - 6.S. Weinberg, Phys. Rev.
**133**, B1318 (1964) MathSciNetADSCrossRefGoogle Scholar - 7.S. Weinberg, Phys. Rev.
**134**, B882 (1964) MathSciNetADSCrossRefGoogle Scholar - 8.S. Weinberg,
*The quantum theory of fields*, vol. I (Cambridge University Press, Cambridge, 1995–2000) Google Scholar - 9.D.N. Williams,
*Lectures in Theoretical Physics*, vol. VIIa (University of Colorado Press, Boulder, 1965), p. 139 Google Scholar - 10.C. Lorcé, Phys. Rev. D
**79**, 113011 (2009) ADSCrossRefGoogle Scholar - 11.N.A. Doughty, R.A. Arnold, J. Math. Phys.
**30**(1989) Google Scholar - 12.J.W. Wagenaar, T.A. Rijken, Phys. Rev. D
**80**, 104027 (2009) ADSCrossRefGoogle Scholar - 13.H. Shi-Zhong, R. Tu-Nan, W. Ning, Z. Zhi-Peng, Eur. Phys. J. C
**26**, 609–623 (2003) ADSzbMATHCrossRefGoogle Scholar - 14.H. Shi-Zhong, Z. Peng-Fei, R. Tu-Nan, Z. Yu-Can, Z. Zhi-Peng, Eur. Phys. J. C
**42**, 375–389 (2005) ADSCrossRefGoogle Scholar - 15.H. Umezawa, A. Visconti, Nucl. Phys.
**1**, 348 (1956) MathSciNetzbMATHGoogle Scholar - 16.A. Aurilia, H. Umezawa, Phys. Rev.
**182**, 1682 (1969) MathSciNetADSzbMATHCrossRefGoogle Scholar - 17.C. Fronsdal, Nuovo Cimento
**9**(Suppl. 2), 416 (1958) MathSciNetGoogle Scholar - 18.G. Velo, D. Zwanziger, Phys. Rev.
**186**, 1337–1341 (1969) ADSCrossRefGoogle Scholar - 19.J. Madore, Phys. Lett. B
**55**, 217–218 (1975) ADSCrossRefGoogle Scholar - 20.S. Deser, A. Waldron, V. Pascalutsa, Phys. Rev. D
**62**, 105031 (2000) MathSciNetADSCrossRefGoogle Scholar - 21.A. Shamaly, A.Z. Capri, Ann. Phys.
**74**, 503 (1972) ADSCrossRefGoogle Scholar - 22.J. Frauendiener, J. Phys. A, Math. Gen.
**36**, 8433–8442 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar - 23.B. Schroer, R. Seiler, J.A. Swieca, Phys. Rev. D
**2**, 2927 (1970) MathSciNetADSzbMATHCrossRefGoogle Scholar - 24.D.V. Ahluwalia, D.J. Ernst, Phys. Rev. C
**45**, 3010 (1992) ADSCrossRefGoogle Scholar