Advertisement

The CMSSM and NUHM1 in light of 7 TeV LHC, B s μ + μ and XENON100 data

  • O. Buchmueller
  • R. Cavanaugh
  • M. Citron
  • A. De Roeck
  • M. J. Dolan
  • J. R. Ellis
  • H. Flächer
  • S. Heinemeyer
  • G. Isidori
  • J. Marrouche
  • D. Martínez Santos
  • S. Nakach
  • K. A. OliveEmail author
  • S. Rogerson
  • F. J. Ronga
  • K. J. de Vries
  • G. Weiglein
Regular Article - Theoretical Physics

Abstract

We make a frequentist analysis of the parameter space of the CMSSM and NUHM1, using a Markov Chain Monte Carlo (MCMC) with 95 (221) million points to sample the CMSSM (NUHM1) parameter spaces. Our analysis includes the ATLAS search for supersymmetric jets +  Open image in new window signals using ∼5/fb of LHC data at 7 TeV, which we apply using PYTHIA and a Delphes implementation that we validate in the relevant parameter regions of the CMSSM and NUHM1. Our analysis also includes the constraint imposed by searches for BR(B s μ + μ ) by LHCb, CMS, ATLAS and CDF, and the limit on spin-independent dark matter scattering from 225 live days of XENON100 data. We assume M h ∼125 GeV, and use a full set of electroweak precision and other flavour-physics observables, as well as the cold dark matter density constraint. The ATLAS5/fb constraint has relatively limited effects on the 68 and 95 % CL regions in the (m 0,m 1/2) planes of the CMSSM and NUHM1. The new BR(B s μ + μ ) constraint has greater impacts on these CL regions, and also impacts significantly the 68 and 95 % CL regions in the (M A ,tanβ) planes of both models, reducing the best-fit values of tanβ. The recent XENON100 data eliminate the focus-point region in the CMSSM and affect the 68 and 95 % CL regions in the NUHM1. In combination, these new constraints reduce the best-fit values of m 0,m 1/2 in the CMSSM, and increase the global χ 2 from 31.0 to 32.8, reducing the p-value from 12 % to 8.5 %. In the case of the NUHM1, they have little effect on the best-fit values of m 0,m 1/2, but increase the global χ 2 from 28.9 to 31.3, thereby reducing the p-value from 15 % to 9.1 %.

Keywords

Dark Matter Higgs Boson Markov Chain Monte Carlo XENON100 Data CMSSM Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work of O.B., M.C., J.E., J.M., S.N., K.A.O. and K.J.de V. is supported in part by the London Centre for Terauniverse Studies (LCTS), using funding from the European Research Council via the Advanced Investigator Grant 267352. The work of S.H. is supported in part by CICYT (grant FPA 2010–22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064. The work of K.A.O. is supported in part by DOE grant DE-FG02-94ER-40823 at the University of Minnesota. We thank Robert Fleischer for discussions.

References

  1. 1.
    O. Buchmueller et al., Eur. Phys. J. C 72, 1878 (2012). arXiv:1110.3568 [hep-ph] ADSCrossRefGoogle Scholar
  2. 2.
    O. Buchmueller et al., Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 [hep-ph] ADSCrossRefGoogle Scholar
  3. 3.
    P. Bechtle et al., arXiv:1102.4693 [hep-ph]
  4. 4.
    M. Farina, M. Kadastik, D. Pappadopulo, J. Pata, M. Raidal, A. Strumia, Nucl. Phys. B 853, 607 (2011). arXiv:1104.3572 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, J. Stelzer, Eur. Phys. J. C 72, 2003 (2012). arXiv:1107.0975 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    N. Bhattacharyya, A. Choudhury, A. Datta, Phys. Rev. D 84, 095006 (2011). arXiv:1107.1997 [hep-ph] ADSCrossRefGoogle Scholar
  7. 7.
    A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S. Tsai, Phys. Rev. D 85, 075012 (2012). arXiv:1111.6098 [hep-ph] ADSCrossRefGoogle Scholar
  8. 8.
    T.J. LeCompte, S.P. Martin, Phys. Rev. D 85, 035023 (2012). arXiv:1111.6897 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, arXiv:1202.1503 [hep-ph]
  10. 10.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  12. 12.
    M. Drees, M.M. Nojiri, Phys. Rev. D 47, 376 (1993). arXiv:hep-ph/9207234 ADSCrossRefGoogle Scholar
  13. 13.
    G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Phys. Rev. D 49, 6173 (1994). arXiv:hep-ph/9312272 ADSCrossRefGoogle Scholar
  14. 14.
    H. Baer, M. Brhlik, Phys. Rev. D 53, 597 (1996). arXiv:hep-ph/9508321 ADSCrossRefGoogle Scholar
  15. 15.
    H. Baer, M. Brhlik, Phys. Rev. D 57, 567 (1998). arXiv:hep-ph/9706509 ADSCrossRefGoogle Scholar
  16. 16.
    J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 388, 97 (1996). arXiv:hep-ph/9607292 ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Ellis, T. Falk, K.A. Olive, M. Schmitt, Phys. Lett. B 413, 355 (1997). arXiv:hep-ph/9705444 ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Schmitt, Phys. Rev. D 58, 095002 (1998). arXiv:hep-ph/9801445 ADSCrossRefGoogle Scholar
  19. 19.
    V.D. Barger, C. Kao, Phys. Rev. D 57, 3131 (1998). arXiv:hep-ph/9704403 ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, Phys. Rev. D 62, 075010 (2000). arXiv:hep-ph/0004169 ADSCrossRefGoogle Scholar
  21. 21.
    H. Baer, M. Brhlik, M.A. Diaz, J. Ferrandis, P. Mercadante, P. Quintana, X. Tata, Phys. Rev. D 63, 015007 (2001). arXiv:hep-ph/0005027 ADSCrossRefGoogle Scholar
  22. 22.
    J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001). arXiv:hep-ph/0102098 ADSCrossRefGoogle Scholar
  23. 23.
    V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001). arXiv:hep-ph/0106189 ADSCrossRefGoogle Scholar
  24. 24.
    L. Roszkowski, R. Ruiz de Austri, T. Nihei, J. High Energy Phys. 0108, 024 (2001). arXiv:hep-ph/0106334 ADSCrossRefGoogle Scholar
  25. 25.
    A. Djouadi, M. Drees, J.L. Kneur, J. High Energy Phys. 0108, 055 (2001). arXiv:hep-ph/0107316 ADSCrossRefGoogle Scholar
  26. 26.
    U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 66, 035003 (2002). arXiv:hep-ph/0201001 ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002). arXiv:hep-ph/0202110 ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, J. High Energy Phys. 0207, 050 (2002). arXiv:hep-ph/0205325 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417
  30. 30.
    J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003). arXiv:hep-ph/0303043 ADSCrossRefGoogle Scholar
  31. 31.
    H. Baer, C. Balazs, J. Cosmol. Astropart. Phys. 0305, 006 (2003). arXiv:hep-ph/0303114 ADSCrossRefGoogle Scholar
  32. 32.
    A.B. Lahanas, D.V. Nanopoulos, Phys. Lett. B 568, 55 (2003). arXiv:hep-ph/0303130 ADSCrossRefGoogle Scholar
  33. 33.
    U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003). arXiv:hep-ph/0303201 ADSCrossRefGoogle Scholar
  34. 34.
    C. Munoz, Int. J. Mod. Phys. A 19, 3093 (2004). arXiv:hep-ph/0309346 ADSCrossRefGoogle Scholar
  35. 35.
    R. Arnowitt, B. Dutta, B. Hu, arXiv:hep-ph/0310103
  36. 36.
    J. Ellis, K.A. Olive, in Particle Dark Matter, ed. by G. Bertone, pp. 142–163. arXiv:1001.3651 [astro-ph.CO]
  37. 37.
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, Phys. Rev. D 71, 095008 (2005). arXiv:hep-ph/0412059 ADSCrossRefGoogle Scholar
  38. 38.
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, J. High Energy Phys. 0507, 065 (2005). hep-ph/0504001 ADSCrossRefGoogle Scholar
  39. 39.
    J.R. Ellis, K.A. Olive, P. Sandick, Phys. Rev. D 78, 075012 (2008). arXiv:0805.2343 [hep-ph] ADSCrossRefGoogle Scholar
  40. 40.
    H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85, 075010 (2012). arXiv:1112.3017 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    J.L. Feng, K.T. Matchev, D. Sanford, Phys. Rev. D 85, 075007 (2012). arXiv:1112.3021 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, Phys. Lett. B 710, 207 (2012). arXiv:1112.3024 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, Phys. Rev. D 85, 075001 (2012). arXiv:1112.3645 [hep-ph] ADSCrossRefGoogle Scholar
  47. 47.
    M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 [hep-ph] ADSCrossRefGoogle Scholar
  48. 48.
    J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665 (2012). arXiv:1112.4391 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    N. Karagiannakis, G. Lazarides, C. Pallis, arXiv:1201.2111 [hep-ph]
  50. 50.
    L. Aparicio, D.G. Cerdeno, L.E. Ibanez, J. High Energy Phys. 1204, 126 (2012). arXiv:1202.0822 [hep-ph] ADSCrossRefGoogle Scholar
  51. 51.
    H. Baer, V. Barger, A. Mustafayev, J. High Energy Phys. 1205, 091 (2012). arXiv:1202.4038 [hep-ph] ADSCrossRefGoogle Scholar
  52. 52.
    C. Balazs, A. Buckley, D. Carter, B. Farmer, M. White, arXiv:1205.1568 [hep-ph]
  53. 53.
    D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, arXiv:1205.2283 [hep-ph]
  54. 54.
    J. Ellis, K.A. Olive, Eur. Phys. J. C 72, 2005 (2012). arXiv:1202.3262 [hep-ph] ADSCrossRefGoogle Scholar
  55. 55.
    C. Strege, G. Bertone, D.G. Cerdeno, M. Fornasa, R.R. de Austri, R. Trotta, J. Cosmol. Astropart. Phys. 1203, 030 (2012). arXiv:1112.4192 [hep-ph] ADSCrossRefGoogle Scholar
  56. 56.
    P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer, C. Hensel, M. Kramer, N. Nguyen et al., J. High Energy Phys. 1206, 098 (2012). arXiv:1204.4199 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Y.-L.S. Tsai, arXiv:1206.0264 [hep-ph]
  58. 58.
    T. Li, J.A. Maxin, D.V. Nanopoulos, J.W. Walker, arXiv:1206.2633 [hep-ph] and references therein
  59. 59.
  60. 60.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.1798 [hep-ex]
  61. 61.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.1898 [hep-ex]
  62. 62.
    O. Buchmueller et al., Phys. Lett. B 657, 87 (2007). arXiv:0707.3447 [hep-ph] ADSCrossRefGoogle Scholar
  63. 63.
    O. Buchmueller et al., J. High Energy Phys. 0809, 117 (2008). arXiv:0808.4128 [hep-ph] ADSCrossRefGoogle Scholar
  64. 64.
    O. Buchmueller et al., Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph] ADSCrossRefGoogle Scholar
  65. 65.
    O. Buchmueller et al., Phys. Rev. D 81, 035009 (2010). arXiv:0912.1036 [hep-ph] ADSCrossRefGoogle Scholar
  66. 66.
    O. Buchmueller et al., Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph] ADSCrossRefGoogle Scholar
  67. 67.
    O. Buchmueller et al., Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph] ADSCrossRefGoogle Scholar
  68. 68.
    O. Buchmueller et al., Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 [hep-ph] ADSCrossRefGoogle Scholar
  69. 69.
    G. Aad et al. (ATLAS Collaboration), arXiv:1204.0735 [hep-ex]
  70. 70.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 239903 (2011) ADSCrossRefGoogle Scholar
  71. 71.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 107, 191801 (2011). Updated results presented at Aspen in Feb. 2012 by M. Rescigno, https://indico.cern.ch/getFile.py/access?contribId=28&sessionId=7&resId=1&materialId=slides&confId=143360. arXiv:1107.2304 [hep-ex] ADSCrossRefGoogle Scholar
  72. 72.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 191802 (2011). arXiv:1107.5834 [hep-ex] ADSCrossRefGoogle Scholar
  73. 73.
    R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 699, 330 (2011). arXiv:1103.2465 [hep-ex] ADSCrossRefGoogle Scholar
  74. 74.
    R. Aaij et al. (LHCb Collaboration), arXiv:1203.4493 [hep-ex]
  75. 75.
    For an official combination of the ATLAS, CMS and LHCb results, see: ATLAS, CMS, and LHCb Collaborations, http://cdsweb.cern.ch/record/1452186/files/LHCb-CONF-2012-017.pdf
  76. 76.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 713, 68 (2012). arXiv:1202.4083 [hep-ex] ADSCrossRefGoogle Scholar
  77. 77.
    E. Aprile et al. (XENON100 Collaboration), arXiv:1207.5988 [astro-ph.CO]
  78. 78.
    For a description of Delphes, written by S. Ovyn and X. Rouby, see http://www.fynu.ucl.ac.be/users/s.ovyn/Delphes/index.html
  79. 79.
    G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008 ADSCrossRefGoogle Scholar
  80. 80.
    G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035 ADSCrossRefGoogle Scholar
  81. 81.
    F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011). arXiv:1101.2872 [hep-ph] ADSCrossRefGoogle Scholar
  82. 82.
    D. Asner et al. (The Heavy Flavor Averaging Group), arXiv:1010.1589 [hep-ex], with updates available at http://www.slac.stanford.edu/xorg/hfag/osc/end_2009
  83. 83.
    E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 [astro-ph.CO] ADSCrossRefGoogle Scholar
  84. 84.
    ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group and the SLD Electroweak and Heavy Flavour Groups, arXiv:1012.2367 [hep-ex], as updated in March 2012 on http://lepewwg.web.cern.ch/LEPEWWG/
  85. 85.
    Tevatron Electroweak Working Group for the CDF and D0 Collaborations, arXiv:1107.5255 [hep-ex]
  86. 86.
  87. 87.
    J. Incandela, Talk on behalf of the CMS Collaboration at CERN, 4th July, 2012, https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6125;
  88. 88.
    CMS Collaboration, http://cdsweb.cern.ch/record/1460438/files/HIG-12-020-pas.pdf. Our analysis does not use the results published more recently by the CMS Collaboration
  89. 89.
    F. Gianotti Talk on behalf of the ATLAS Collaboration at CERN, 4th July, 2012, https://cms-docdb.cern.ch/cgi-bin/PublicDocDB//ShowDocument?docid=6126
  90. 90.
  91. 91.
    T. Aaltonen et al. (CDF and D0 Collaborations), arXiv:1207.6436 [hep-ex]
  92. 92.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex] ADSCrossRefGoogle Scholar
  93. 93.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012). arXiv:1202.1488 [hep-ex] ADSCrossRefGoogle Scholar
  94. 94.
    For more information and updates, please see http://cern.ch/mastercode/
  95. 95.
    S. Heinemeyer et al., J. High Energy Phys. 0608, 052 (2006). arXiv:hep-ph/0604147 ADSCrossRefGoogle Scholar
  96. 96.
    S. Heinemeyer, W. Hollik, A.M. Weber, G. Weiglein, J. High Energy Phys. 0804, 039 (2008). arXiv:0710.2972 [hep-ph] ADSCrossRefGoogle Scholar
  97. 97.
    B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). arXiv:hep-ph/0104145 ADSzbMATHCrossRefGoogle Scholar
  98. 98.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  99. 99.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  100. 100.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320 ADSzbMATHCrossRefGoogle Scholar
  101. 101.
    M. Frank et al., J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  102. 102.
  103. 103.
    G. Isidori, P. Paradisi, Phys. Lett. B 639, 499 (2006). arXiv:hep-ph/0605012 ADSCrossRefGoogle Scholar
  104. 104.
    G. Isidori, F. Mescia, P. Paradisi, D. Temes, Phys. Rev. D 75, 115019 (2007). arXiv:hep-ph/0703035 and references therein ADSCrossRefGoogle Scholar
  105. 105.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059 ADSzbMATHCrossRefGoogle Scholar
  106. 106.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 149, 103 (2002). arXiv:hep-ph/0112278 ADSzbMATHCrossRefGoogle Scholar
  107. 107.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 174, 577 (2006). arXiv:hep-ph/0405253 ADSzbMATHCrossRefGoogle Scholar
  108. 108.
    P. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123 ADSCrossRefGoogle Scholar
  109. 109.
    B. Allanach et al., Comput. Phys. Commun. 180, 8 (2009). arXiv:0801.0045 [hep-ph] ADSCrossRefGoogle Scholar
  110. 110.
    F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  111. 111.
    F. Mahmoudi, Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144 [hep-ph] ADSCrossRefGoogle Scholar
  112. 112.
    D. Eriksson, F. Mahmoudi, O. Stal, J. High Energy Phys. 0811, 035 (2008). arXiv:0808.3551 [hep-ph] ADSCrossRefGoogle Scholar
  113. 113.
    Information about this code is available from K.A. Olive: it contains important contributions from T. Falk, A. Ferstl, G. Ganis, F. Luo, A. Mustafayev, J. McDonald, K.A. Olive, P. Sandick, Y. Santoso and M. Srednicki Google Scholar
  114. 114.
    P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, J. Cosmol. Astropart. Phys. 0407, 008 (2004). astro-ph/0406204 ADSCrossRefGoogle Scholar
  115. 115.
    P. Gondolo, J. Edsj, P. Ullio, L. Bergstrom, M. Schelke, E.A. Baltz, T. Bringmann, G. Duda, http://www.darksusy.org
  116. 116.
    R. Aaij et al. (LHCb Collaboration), arXiv:1205.3422 [hep-ex]
  117. 117.
    J.P. Lees et al. (BaBar Collaboration), arXiv:1205.5442 [hep-ex]
  118. 118.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 221804 (2011). arXiv:1109.2352 [hep-ex] ADSCrossRefGoogle Scholar
  119. 119.
    T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph] ADSCrossRefGoogle Scholar
  120. 120.
    J. Ellis, K. Olive, Y. Santoso, Phys. Lett. B 539, 107 (2002). arXiv:hep-ph/0204192 ADSCrossRefGoogle Scholar
  121. 121.
    J.R. Ellis, T. Falk, K.A. Olive, Y. Santoso, Nucl. Phys. B 652, 259 (2003). arXiv:hep-ph/0210205 ADSCrossRefGoogle Scholar
  122. 122.
  123. 123.
    A.J. Buras, M.V. Carlucci, S. Gori, G. Isidori, J. High Energy Phys. 1010, 009 (2010). arXiv:1005.5310 [hep-ph] ADSCrossRefGoogle Scholar
  124. 124.
    K. de Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, N. Tuning, arXiv:1204.1735 [hep-ph]
  125. 125.
    K. de Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk, A. Pellegrino, N. Tuning, arXiv:1204.1737 [hep-ph]
  126. 126.
    M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, PIN Newslett. 16, 110 (2002). hep-ph/0111066 Google Scholar
  127. 127.
    M.M. Pavan, private communication Google Scholar
  128. 128.
    R. Barate et al. (ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs boson searches), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 ADSCrossRefGoogle Scholar
  129. 129.
    S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations and LEP Working Group for Higgs boson searches), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 ADSCrossRefGoogle Scholar
  130. 130.
    S.S. AbdusSalam et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph] ADSCrossRefGoogle Scholar
  131. 131.

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  • O. Buchmueller
    • 1
    • 2
  • R. Cavanaugh
    • 3
    • 4
  • M. Citron
    • 1
  • A. De Roeck
    • 2
    • 5
    • 6
  • M. J. Dolan
    • 7
  • J. R. Ellis
    • 5
    • 8
  • H. Flächer
    • 9
  • S. Heinemeyer
    • 10
  • G. Isidori
    • 11
    • 5
  • J. Marrouche
    • 1
  • D. Martínez Santos
    • 5
  • S. Nakach
    • 1
  • K. A. Olive
    • 12
    Email author
  • S. Rogerson
    • 1
  • F. J. Ronga
    • 13
  • K. J. de Vries
    • 1
  • G. Weiglein
    • 14
  1. 1.High Energy Physics Group, Blackett LaboratoryImperial CollegeLondonUK
  2. 2.LHC Physics Center at Fermi National Accelerator LaboratoryBataviaUSA
  3. 3.Fermi National Accelerator LaboratoryBataviaUSA
  4. 4.Physics DepartmentUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Physics DepartmentCERNGenève 23Switzerland
  6. 6.Antwerp UniversityWilrijkBelgium
  7. 7.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamUK
  8. 8.Theoretical Particle Physics and Cosmology Group, Department of PhysicsKing’s College LondonLondonUK
  9. 9.H.H. Wills Physics LaboratoryUniversity of BristolBristolUK
  10. 10.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  11. 11.INFNLaboratori Nazionali di FrascatiFrascatiItaly
  12. 12.William I. Fine Theoretical Physics Institute, School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA
  13. 13.Institute for Particle PhysicsETH ZürichZürichSwitzerland
  14. 14.DESYHamburgGermany

Personalised recommendations