Advertisement

Effects of inhomogeneities on apparent cosmological observables: “fake” evolving dark energy

  • Antonio Enea Romano
  • Alexei A. Starobinsky
  • Misao Sasaki
Regular Article - Theoretical Physics

Abstract

Using the exact Lemaitre–Bondi–Tolman solution with a non-vanishing cosmological constant Λ, we investigate how the presence of a local spherically symmetric inhomogeneity can affect apparent cosmological observables, such as the deceleration parameter or the effective equation of state of dark energy (DE), derived from the luminosity distance under the assumption that the real space-time is exactly homogeneous and isotropic. The presence of a local underdensity is found to produce apparent phantom behavior of DE, while a locally overdense region leads to apparent quintessence behavior. We consider relatively small large scale inhomogeneities which today are not linear and could be seeded by primordial curvature perturbations compatible with CMB bounds. Our study shows how observations in an inhomogeneous ΛCDM universe with initial conditions compatible with the inflationary beginning, if interpreted under the wrong assumption of homogeneity, can lead to the wrong conclusion about the presence of “fake” evolving dark energy instead of Λ.

Keywords

Dark Energy Cosmological Constant Geodesic Equation Luminosity Distance Curvature Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

AER is supported by MEXT Grant-in-Aid for the global COE program at Kyoto University, “The Next Generation of Physics, Spun from Universality and Emergence”. MS is supported in part by JSPS Grant-in-Aid for Scientific Research (A) No. 21244033, and by JSPS Grant-in-Aid for Creative Scientific Research No. 19GS0219. AS acknowledges RESCEU hospitality as a visiting professor. He was also partially supported by the grant RFBR 08-02-00923 and by the Scientific Programme “Astronomy” of the Russian Academy of Sciences.

References

  1. 1.
    A.G. Riess et al. (Supernova Search Team Collaboration), Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201 ADSCrossRefGoogle Scholar
  2. 2.
    J.L. Tonry et al. (Supernova Search Team Collaboration), Astrophys. J. 594, 1 (2003). arXiv:astro-ph/0305008 ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Knop et al. (The Supernova Cosmology Project Collaboration), Astrophys. J. 598, 102 (2003). arXiv:astro-ph/0309368 ADSCrossRefGoogle Scholar
  4. 4.
    B.J. Barris et al., Astrophys. J. 602, 571 (2004). arXiv:astro-ph/0310843 ADSCrossRefGoogle Scholar
  5. 5.
    A.G. Riess et al. (Supernova Search Team Collaboration), Astrophys. J. 607, 665 (2004). arXiv:astro-ph/0402512 ADSCrossRefGoogle Scholar
  6. 6.
    S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133 ADSCrossRefGoogle Scholar
  7. 7.
    C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003). arXiv:astro-ph/0302207 ADSCrossRefGoogle Scholar
  8. 8.
    D.N. Spergel et al., arXiv:astro-ph/0603449
  9. 9.
    Y. Nambu, M. Tanimoto, arXiv:gr-qc/0507057
  10. 10.
    T. Kai, H. Kozaki, K.i. nakao, Y. Nambu, C.M. Yoo, Prog. Theor. Phys. 117, 229 (2007). arXiv:gr-qc/0605120 MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    A.E. Romano, Phys. Rev. D 75, 043509 (2007). arXiv:astro-ph/0612002 MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    D.J.H. Chung, A.E. Romano, Phys. Rev. D 74, 103507 (2006). arXiv:astro-ph/0608403 ADSCrossRefGoogle Scholar
  13. 13.
    S. Alexander, T. Biswas, A. Notari, D. Vaid, arXiv:0712.0370 [astro-ph]
  14. 14.
    H. Alnes, M. Amarzguioui, O. Gron, Phys. Rev. D 73, 083519 (2006). arXiv:astro-ph/0512006 ADSCrossRefGoogle Scholar
  15. 15.
    A.E. Romano, Phys. Rev. D 76, 103525 (2007). arXiv:astro-ph/0702229 ADSCrossRefGoogle Scholar
  16. 16.
    A.E. Romano, arXiv:0911.2927 [astro-ph.CO]
  17. 17.
    A.E. Romano, arXiv:0912.2866 [astro-ph.CO]
  18. 18.
    M.N. Celerier, K. Bolejko, A. Krasinski, arXiv:0906.0905 [astro-ph.CO]
  19. 19.
    G. Lemaitre, Ann. Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 53, 51 (1933) Google Scholar
  20. 20.
    R.C. Tolman, Proc. Natl. Acad. Sci. 20, 169 (1934) ADSCrossRefGoogle Scholar
  21. 21.
    H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947) MathSciNetADSzbMATHGoogle Scholar
  22. 22.
    G.C. Omer, Proc. Natl. Acad. Sci. 53, 1 (1965) ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Zecca, Nuovo Cimento B 106, 413 (1991) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J.E. Felten, R. Isaacman, Rev. Mod. Phys. 58, 689 (1986) ADSCrossRefGoogle Scholar
  25. 25.
    D. Edwards, Mon. Not. R. Astron. Soc. 159, 51 (1972) ADSGoogle Scholar
  26. 26.
    A.E. Romano, M. Sasaki, arXiv:0905.3342 [astro-ph.CO]
  27. 27.
    M.N. Celerier, Astron. Astrophys. 353, 63 (2000). arXiv:astro-ph/9907206 ADSGoogle Scholar
  28. 28.
    C. Hellaby, PoS ISFTG, 005 (2009). arXiv:0910.0350 [gr-qc] Google Scholar
  29. 29.
    V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006). astro-ph/0610026 MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008). arXiv:0807.3548 [astro-ph] ADSCrossRefGoogle Scholar
  31. 31.
    V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008). arXiv:0807.3548 [astro-ph] ADSCrossRefGoogle Scholar
  32. 32.
    C. Zunckel, C. Clarkson, Phys. Rev. Lett. 101, 181301 (2008). arXiv:0807.4304 [astro-ph] ADSCrossRefGoogle Scholar
  33. 33.
    A.A. Starobinsky, Phys. Lett. B 117, 175 (1982) ADSCrossRefGoogle Scholar
  34. 34.
    A.A. Starobinsky, JETP Lett. 42, 152 (1985) ADSGoogle Scholar
  35. 35.
    M. Sasaki, E.D. Stewart, Prog. Theor. Phys. 95, 71 (1996). arXiv:astro-ph/9507001 ADSCrossRefGoogle Scholar
  36. 36.
    N. Mustapha, C. Hellaby, Gen. Relativ. Gravit. 33, 455 (2001). astro-ph/0006083 MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    D.H. Lyth, K.A. Malik, M. Sasaki, J. Cosmol. Astropart. Phys. 0505, 004 (2005). astro-ph/0411220 ADSCrossRefGoogle Scholar
  38. 38.
    R.A. Sussman, Class. Quantum Gravity 27, 175001 (2010). arXiv:1005.0717 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    A. Shafieloo, V. Sahni, A.A. Starobinsky, Phys. Rev. D 80, 101301(R) (2009). arXiv:0903.5141 [astro-ph.CO] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  • Antonio Enea Romano
    • 1
    • 2
    • 3
    • 5
  • Alexei A. Starobinsky
    • 4
    • 5
  • Misao Sasaki
    • 1
  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  2. 2.Instituto de FisicaUniversidad de AntioquiaMedellinColombia
  3. 3.Leung Center for Cosmology and Particle AstrophysicsNational Taiwan UniversityTaipeiTaiwan, R.O.C.
  4. 4.L. D. Landau Institute for Theoretical PhysicsMoscowRussia
  5. 5.Research Centre for the Early Universe (RESCEU), Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations