Advertisement

Five-dimensional heterotic black holes and its dual IR-CFT

  • Hossein YavartanooEmail author
Regular Article - Theoretical Physics

Abstract

We analyze the possible dynamical emergence of IR conformal field theory describing the low-energy excitations of near-extremal black holes in five-dimensional compactification of heterotic strings. We find that, by tuning the mass and charges in such a way that the extremal black holes have a classically vanishing horizon area, the near horizon develops an AdS3 throat and when we combine the low-energy limit with vanishing Newton coupling constant, the system has a dual conformal field theory description. We compare our results with c-extremization and the Kerr/CFT predictions.

Keywords

Black Hole Black Hole Solution Gauge Field Extremal Black Hole Heterotic String Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank Sameer Murthy and Shahin Sheikh-Jabbari for useful comments and discussion. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0023230).

References

  1. 1.
    A. Strominger, C. Vafa, Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99 (1996). hep-th/9601029 MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J. Simon, Extremal black holes, holography and coarse graining. Int. J. Mod. Phys. A 26, 1903 (2011). arXiv:1106.0116 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review. arXiv:1203.3561 [hep-th]
  4. 4.
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity. J. High Energy Phys. 0509, 038 (2005). arXiv:hep-th/0506177 ADSCrossRefGoogle Scholar
  5. 5.
    A. Sen, Black hole entropy function, attractors and precision counting of microstates. Gen. Relativ. Gravit. 40, 2249 (2008). arXiv:0708.1270 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Sen, Quantum entropy function from AdS(2)/CFT(1) correspondence. Int. J. Mod. Phys. A 24, 4225–4244 (2009). arXiv:0809.3304 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Sen, State operator correspondence and entanglement in AdS2/CFT1. arXiv:1101.4254 [hep-th]
  8. 8.
    A.J. Amsel, G.T. Horowitz, D. Marolf, M.M. Roberts, No dynamics in the extremal Kerr throat. J. High Energy Phys. 0909, 044 (2009). arXiv:0906.2376 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    O.J.C. Dias, H.S. Reall, J.E. Santos, Kerr-CFT and gravitational perturbations. J. High Energy Phys. 0908, 101 (2009). arXiv:0906.2380 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M.M. Sheikh-Jabbari, H. Yavartanoo, EVH black holes, AdS3 throats and EVH/CFT proposal. J. High Energy Phys. 1110, 013 (2011). arXiv:1107.5705 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Sen, Strong–weak coupling duality in three-dimensional string theory. Nucl. Phys. B 434, 179 (1995). hep-th/9408083 ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    A. Sen, Strong–weak coupling duality in four-dimensional string theory. Int. J. Mod. Phys. A 9, 3707 (1994). hep-th/9402002 ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    D. Youm, Black holes and solitons in string theory. Phys. Rep. 316, 1 (1999). hep-th/9710046 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    S. Ferrara, J.M. Maldacena, Branes, central charges and U duality invariant BPS conditions. Class. Quantum Gravity 15, 749 (1998). hep-th/9706097 MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    O. Coussaert, M. Henneaux, Selfdual solutions of (2+1) Einstein gravity with a negative cosmological constant, in The Black Hole, ed. by C. Teitelboim (1998), pp. 25–39. hep-th/9407181 Google Scholar
  16. 16.
    O. Coussaert, M. Henneaux, Selfdual solutions of (2+1) Einstein gravity with a negative cosmological constant. hep-th/9407181
  17. 17.
    P.D. Prester, Alpha’-corrections and heterotic black holes. arXiv:1001.1452 [hep-th]
  18. 18.
    D. Kutasov, F. Larsen, R.G. Leigh, String theory in magnetic monopole backgrounds. Nucl. Phys. B 550, 183 (1999). hep-th/9812027 MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    P. Kraus, F. Larsen, Microscopic black hole entropy in theories with higher derivatives. J. High Energy Phys. 0509, 034 (2005). hep-th/0506176 MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    P. Kraus, Lectures on black holes and the AdS(3)/CFT(2) correspondence. Lect. Notes Phys. 755, 193 (2008). hep-th/0609074 MathSciNetADSGoogle Scholar
  21. 21.
    G. Barnich, G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions. Class. Quantum Gravity 24, F15 (2007). gr-qc/0610130 MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    A. Sen, Black hole entropy function, attractors and precision counting of microstates. Gen. Relativ. Gravit. 40, 2249 (2008). arXiv:0708.1270 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Castro, S. Murthy, Corrections to the statistical entropy of five dimensional black holes. J. High Energy Phys. 0906, 024 (2009). arXiv:0807.0237 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari, J. Simon, What is a chiral 2d CFT? And what does it have to do with extremal black holes? J. High Energy Phys. 1002, 017 (2010). arXiv:0906.3272 [hep-th] ADSCrossRefGoogle Scholar
  25. 25.
    T. Hartman, K. Murata, T. Nishioka, A. Strominger, CFT duals for extreme black holes. J. High Energy Phys. 0904, 019 (2009). arXiv:0811.4393 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    D.D.K. Chow, M. Cvetic, H. Lu, C.N. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities. Phys. Rev. D 79, 084018 (2009). arXiv:0812.2918 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P.D. Prester, AdS3 backgrounds from 10D effective action of heterotic string theory. Phys. Rev. D 81, 044014 (2010). arXiv:0912.0030 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. de Boer, M. Johnstone, M.M. Sheikh-Jabbari, J. Simon, Emergent IR dual 2d CFTs in charged AdS5 black holes. Phys. Rev. D 85, 084039 (2012). arXiv:1112.4664 [hep-th] ADSCrossRefGoogle Scholar
  29. 29.
    H. Yavartanoo, EVH black hole solutions with higher derivative corrections. Eur. Phys. J. C 72, 3 (2012) Google Scholar
  30. 30.
    E.J. Martinec, W. McElgin, String theory on AdS orbifolds. J. High Energy Phys. 0204, 029 (2002). hep-th/0106171 MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    J. de Boer, M.M. Sheikh-Jabbari, J. Simon, Near horizon limits of massless BTZ and their CFT duals. Class. Quantum Gravity 28, 175012 (2011). arXiv:1011.1897 [hep-th] ADSCrossRefGoogle Scholar
  32. 32.
    H. Yavartanoo, On EVH black hole solution in heterotic string theory. Nucl. Phys. B 863, 410 (2012) ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    M. Johnstone, M.M. Sheikh-Jabbari, J. Simón, H. Yavartanoo, Charged-rotating AdS5 EVH black holes and their dual 2d IR CFTs. Work in progress Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsKyung Hee UniversitySeoulKorea

Personalised recommendations