Advertisement

Model independent bounds on the modulus of the pion form factor on the unitarity cut below the ωπ threshold

  • B. Ananthanarayan
  • I. Caprini
  • Diganta Das
  • I. Sentitemsu Imsong
Regular Article - Theoretical Physics

Abstract

We calculate upper and lower bounds on the modulus of the pion electromagnetic form factor on the unitarity cut below the ωπ inelastic threshold, using as input the phase in the elastic region known via the Fermi–Watson theorem from the ππ P-wave phase shift, and a suitably weighted integral of the modulus squared above the inelastic threshold. The normalization at t=0, the pion charge radius and experimental values at spacelike momenta are used as additional input information. The bounds are model independent, in the sense that they do not rely on specific parametrizations and do not require assumptions on the phase of the form factor above the inelastic threshold. The results provide nontrivial consistency checks on the recent experimental data on the modulus available below the ωπ threshold from e + e annihilation and τ-decay experiments. In particular, at low energies the calculated bounds offer a more precise description of the modulus than the experimental data.

Keywords

Form Factor Charge Radius Elastic Region Pion Form Factor Outer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We are grateful to H. Leutwyler for very useful comments and suggestions on the manuscript. This work was supported by Romanian CNCS in the Program Idei-PCE, Contract No. 121/2011.

References

  1. 1.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009). arXiv:0908.3589 [hep-ex] ADSCrossRefGoogle Scholar
  2. 2.
    F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 670, 285 (2009). arXiv:0809.3950 [hep-ex] ADSCrossRefGoogle Scholar
  3. 3.
    F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 700, 102 (2011). arXiv:1006.5313 [hep-ex] ADSCrossRefGoogle Scholar
  4. 4.
    R.R. Akhmetshin, V.M. Aulchenko, V.S. Banzarov, L.M. Barkov, N.S. Bashtovoy, A.E. Bondar, D.V. Bondarev, A.V. Bragin et al., JETP Lett. 84, 413 (2006). Pisma Zh. Eksp. Teor. Fiz. 84, 491 (2006). hep-ex/0610016 ADSCrossRefGoogle Scholar
  5. 5.
    R.R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 648, 28 (2007). hep-ex/0610021 ADSCrossRefGoogle Scholar
  6. 6.
    M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008). arXiv:0805.3773 [hep-ex] ADSCrossRefGoogle Scholar
  7. 7.
    B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001). hep-ph/0005297 ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001). hep-ph/0103088 ADSCrossRefGoogle Scholar
  9. 9.
    R. Kaminski, J.R. Pelaez, F.J. Yndurain, Phys. Rev. D 77, 054015 (2008). arXiv:0710.1150 [hep-ph] ADSCrossRefGoogle Scholar
  10. 10.
    R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, F.J. Yndurain, Phys. Rev. D 83, 074004 (2011). arXiv:1102.2183 [hep-ph] ADSCrossRefGoogle Scholar
  11. 11.
    I. Caprini, G. Colangelo, H. Leutwyler, Eur. Phys. J. C 72, 1860 (2012). arXiv:1111.7160 [hep-ph] ADSCrossRefGoogle Scholar
  12. 12.
    G. Colangelo, Nucl. Phys. Proc. Suppl. 131, 185 (2004). hep-ph/0312017 ADSCrossRefGoogle Scholar
  13. 13.
    P. Masjuan, S. Peris, J.J. Sanz-Cillero, Phys. Rev. D 78, 074028 (2008). arXiv:0807.4893 [hep-ph] ADSCrossRefGoogle Scholar
  14. 14.
    T. Horn et al. (Jefferson Lab F(pi)-2 Collaboration), Phys. Rev. Lett. 97, 192001 (2006). nucl-ex/0607005 ADSCrossRefGoogle Scholar
  15. 15.
    G.M. Huber et al. (Jefferson Lab Collaboration), Phys. Rev. C 78, 045203 (2008). arXiv:0809.3052 [nucl-ex] ADSCrossRefGoogle Scholar
  16. 16.
    I. Caprini, Eur. Phys. J. C 13, 471 (2000). hep-ph/9907227 ADSCrossRefGoogle Scholar
  17. 17.
    G. Abbas, B. Ananthanarayan, I. Caprini, I.S. Imsong, S. Ramanan, Eur. Phys. J. A 45, 389 (2010). arXiv:1004.4257 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    B. Ananthanarayan, I. Caprini, J. Phys. Conf. Ser. 374, 012011 (2012). arXiv:1202.5391 [hep-ph] ADSCrossRefGoogle Scholar
  19. 19.
    B. Ananthanarayan, I. Caprini, I.S. Imsong, Phys. Rev. D 83, 096002 (2011). arXiv:1102.3299 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    B. Ananthanarayan, I. Caprini, I.S. Imsong, Phys. Rev. D 85, 096006 (2012). arXiv:1203.5398 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    H. Cornille, A. Martin, Nucl. Phys. B 93, 61 (1975) ADSCrossRefGoogle Scholar
  22. 22.
    H. Leutwyler, hep-ph/0212324
  23. 23.
    F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011). arXiv:1101.2872 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    M. Benayoun, P. David, L. DelBuono, F. Jegerlehner, Eur. Phys. J. C 72, 1848 (2012). arXiv:1106.1315 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). Erratum-ibid. C 72, 1874 (2012). arXiv:1010.4180 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    C. Hanhart, Phys. Lett. B 715, 170 (2012). arXiv:1203.6839 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    S. Anderson et al. (CLEO Collaboration), Phys. Rev. D 61, 112002 (2000). hep-ex/9910046 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  • B. Ananthanarayan
    • 1
  • I. Caprini
    • 2
  • Diganta Das
    • 3
  • I. Sentitemsu Imsong
    • 1
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Horia Hulubei National Institute for Physics and Nuclear EngineeringMagureleRomania
  3. 3.Institute of Mathematical SciencesTaramaniIndia

Personalised recommendations