Advertisement

Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC

  • R. Benbrik
  • M. Gomez Bock
  • S. Heinemeyer
  • O. StålEmail author
  • G. Weiglein
  • L. Zeune
Regular Article - Theoretical Physics

Abstract

We confront the discovery of a boson decaying into two photons, as reported recently by ATLAS and CMS, with the corresponding predictions in the Minimal Supersymmetric Standard Model (MSSM) and the Next-to-Minimal Supersymmetric Standard Model (NMSSM). We perform a scan over the relevant regions of parameter space in both models and evaluate the MSSM and NMSSM predictions for the dominant Higgs production channel and the photon–photon decay channel. Taking into account the experimental constraints from previous direct searches, flavor physics, electroweak measurements as well as theoretical considerations, we find that a Higgs signal in the two photon channel with a rate equal to, or above, the SM prediction is viable over the full mass range 123≲M H ≲127 GeV, both in the MSSM and the NMSSM. We find that besides the interpretation of a possible signal at about 125 GeV in terms of the lightest \(\mathcal {CP}\)-even Higgs boson, both the MSSM and the NMSSM permit also a viable interpretation where an observed state at about 125 GeV would correspond to the second-lightest \(\mathcal {CP}\)-even Higgs boson in the spectrum, which would be accompanied by another light Higgs with suppressed couplings to W and Z bosons. We find that a significant enhancement of the γγ rate, compatible with the signal strengths observed by ATLAS and CMS, is possible in both the MSSM and the NMSSM, and we analyse in detail different mechanisms in the two models that can give rise to such an enhancement. We briefly discuss also our predictions in the two models for the production and subsequent decay into two photons of a \(\mathcal {CP}\)-odd Higgs boson.

Keywords

Higgs Boson Large Hadron Collider Minimal Supersymmetric Standard Model Higgs Sector Higgs Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank C. Duhr, B. Fuks, S. Liebler and F. Staub for helpful discussions. We are also grateful to T. Stefaniak and O. Brein for discussions and assistance with HiggsBounds. The work of S.H. was partially supported by CICYT (grant FPA 2007–66387 and FPA 2010–22163-C02-01), and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064. Work supported in part by the European Community’s Marie-Curie Research Training Network under contract MRTN-CT-2006-035505 “Tools and Precision Calculations for Physics Discoveries at Colliders” and by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. The work of R.B. was supported by the Spanish Consejo Superior de Investigaciones Cientificas (CSIC).

References

  1. 1.
    G. Aad et al. (ATLAS Collaboration), arXiv:1207.7214 [hep-ex]
  2. 2.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.7235 [hep-ex]
  3. 3.
  4. 4.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex] ADSCrossRefGoogle Scholar
  5. 5.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012). arXiv:1202.1488 [hep-ex] ADSCrossRefGoogle Scholar
  6. 6.
    CMS Collaboration, arXiv:1202.1488 [hep-ex]
  7. 7.
    CDF Collaboration, DØ Collaboration, arXiv:1207.0449 [hep-ex]
  8. 8.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  9. 9.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988) Google Scholar
  11. 11.
    U. Ellwanger, C. Hugonie, A.M. Teixeira, Phys. Rep. 496, 1 (2010). arXiv:0910.1785 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Maniatis, Int. J. Mod. Phys. A 25, 3505 (2010). arXiv:0906.0777 [hep-ph] MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    J. Ellis, J.F. Gunion, H.A. Haber, L. Roszkowski, F. Zwirner, Phys. Rev. D 39, 844 (1989) ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Miller, R. Nevzorov, P.M. Zerwas, Nucl. Phys. B 681, 3 (2004). arXiv:hep-ph/0304049 ADSCrossRefGoogle Scholar
  15. 15.
    A. Djouadi et al., J. High Energy Phys. 0807, 002 (2008). arXiv:0801.4321 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    U. Ellwanger, J.F. Gunion, C. Hugonie, arXiv:hep-ph/0111179
  17. 17.
    U. Ellwanger, J.F. Gunion, C. Hugonie, S. Moretti, arXiv:hep-ph/0305109
  18. 18.
    U. Ellwanger, J.F. Gunion, C. Hugonie, S. Moretti, arXiv:hep-ph/0401228
  19. 19.
    S. Moretti, S. Munir, P. Poulose, Phys. Lett. B 644, 241 (2007). arXiv:hep-ph/0608233 ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Forshaw, J.F. Gunion, L. Hodgkinson, A. Papaefstathiou, A.D. Pilkington, J. High Energy Phys. 0804, 090 (2008). arXiv:0712.3510 [hep-ph] CrossRefGoogle Scholar
  21. 21.
    A. Belyaev, S. Hesselbach, S. Lehti, S. Moretti, A. Nikitenko, C.H. Shepherd-Themistocleous, arXiv:0805.3505 [hep-ph]
  22. 22.
    K.E. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    K.E. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    R. Dermisek, J.F. Gunion, Phys. Rev. Lett. 95, 041801 (2005). arXiv:hep-ph/0502105 ADSCrossRefGoogle Scholar
  25. 25.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 73, 111701 (2006). arXiv:hep-ph/0510322 ADSCrossRefGoogle Scholar
  26. 26.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 75, 075019 (2007). arXiv:hep-ph/0611142 ADSCrossRefGoogle Scholar
  27. 27.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 76, 095006 (2007). arXiv:0705.4387 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 79, 055014 (2009). arXiv:0811.3537 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    R. Dermisek, J.F. Gunion, Phys. Rev. D 81, 075003 (2010). arXiv:1002.1971 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    O. Stål, G. Weiglein, J. High Energy Phys. 1201, 071 (2012). arXiv:1108.0595 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    U. Ellwanger, Eur. Phys. J. C 71, 2011 (1782). arXiv:1108.0157 [hep-ph] Google Scholar
  32. 32.
    P. Draper, T. Liu, C.E.M. Wagner, L.-T. Wang, H. Zhang, Phys. Rev. Lett. 106, 121805 (2011). arXiv:1009.3963 [hep-ph] ADSCrossRefGoogle Scholar
  33. 33.
    D.A. Vasquez, G. Belanger, C. Boehm, A. Pukhov, J. Silk, Phys. Rev. D 82, 115027 (2010). arXiv:1009.4380 [hep-ph] ADSCrossRefGoogle Scholar
  34. 34.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  35. 35.
    A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173 ADSCrossRefGoogle Scholar
  36. 36.
    S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659 (2006). arXiv:hep-ph/0407244 ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). arXiv:hep-ph/0412214 ADSCrossRefGoogle Scholar
  38. 38.
    U. Ellwanger, Phys. Lett. B 303, 271 (1993). arXiv:hep-ph/9302224 ADSCrossRefGoogle Scholar
  39. 39.
    T. Elliott, S.F. King, P.L. White, Phys. Lett. B 305, 71 (1993). arXiv:hep-ph/9302202 ADSCrossRefGoogle Scholar
  40. 40.
    T. Elliott, S.F. King, P.L. White, Phys. Lett. B 314, 56 (1993). arXiv:hep-ph/9305282 ADSCrossRefGoogle Scholar
  41. 41.
    T. Elliott, S.F. King, P.L. White, Phys. Rev. D 49, 2435 (1994). arXiv:hep-ph/9308309 ADSCrossRefGoogle Scholar
  42. 42.
    P.N. Pandita, Phys. Lett. B 318, 338 (1993) ADSCrossRefGoogle Scholar
  43. 43.
    U. Ellwanger, C. Hugonie, Phys. Lett. B 623, 93 (2005). arXiv:hep-ph/0504269 ADSCrossRefGoogle Scholar
  44. 44.
    G. Degrassi, P. Slavich, Nucl. Phys. B 825, 119 (2010). arXiv:0907.4682 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    F. Staub, W. Porod, B. Herrmann, J. High Energy Phys. 1010, 040 (2010). arXiv:1007.4049 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune (work in progress) Google Scholar
  47. 47.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320 ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009). See www.feynhiggs.de ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  50. 50.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  51. 51.
    U. Ellwanger, J.F. Gunion, C. Hugonie, J. High Energy Phys. 0502, 066 (2005). arXiv:hep-ph/0406215 ADSCrossRefGoogle Scholar
  52. 52.
    U. Ellwanger, C. Hugonie, Comput. Phys. Commun. 175, 290 (2006). arXiv:hep-ph/0508022 ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    G. Belanger, F. Boudjema, C. Hugonie, A. Pukhov, A. Semenov, J. Cosmol. Astropart. Phys. 0509, 001 (2005). arXiv: hep-ph/0505142 ADSCrossRefGoogle Scholar
  54. 54.
    D. Das, U. Ellwanger, A.M. Teixeira, Comput. Phys. Commun. 183, 774 (2012). arXiv:1106.5633 [hep-ph] ADSCrossRefGoogle Scholar
  55. 55.
    W. Porod, Comput. Phys. Commun. 153, 275 (2003). arXiv: hep-ph/0301101 ADSCrossRefGoogle Scholar
  56. 56.
    W. Porod, F. Staub, arXiv:1104.1573 [hep-ph]
  57. 57.
    F. Staub, arXiv:0806.0538 [hep-ph]
  58. 58.
    F. Staub, Comput. Phys. Commun. 181, 1077 (2010). arXiv:0909.2863 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    K. Ender, T. Graf, M. Mühlleitner, H. Rzehak, arXiv:1111.4952 [hep-ph]
  60. 60.
    T. Graf, R. Grober, M. Mühlleitner, H. Rzehak, K. Walz, arXiv:1206.6806 [hep-ph]
  61. 61.
    S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336 [hep-ph] ADSCrossRefGoogle Scholar
  63. 63.
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, L.-T. Wang, arXiv:1205.5842 [hep-ph]
  64. 64.
    H. Baer, V. Barger, A. Mustafayev, arXiv:1112.3017 [hep-ph]
  65. 65.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph] ADSCrossRefGoogle Scholar
  66. 66.
    M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 [hep-ph] ADSCrossRefGoogle Scholar
  67. 67.
    J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665 (2012). arXiv:1112.4391 [hep-ph] ADSCrossRefGoogle Scholar
  68. 68.
    A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D 85, 095013 (2012). arXiv:1112.5666 [hep-ph] ADSCrossRefGoogle Scholar
  69. 69.
    F. Brümmer, W. Buchmüller, J. High Energy Phys. 1205, 006 (2012). arXiv:1201.4338 [hep-ph] ADSCrossRefGoogle Scholar
  70. 70.
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, arXiv:1202.3144 [hep-ph]
  71. 71.
    J. Ellis, K.A. Olive, arXiv:1202.3262 [hep-ph]
  72. 72.
    N. Desai, B. Mukhopadhyaya, S. Niyogi, arXiv:1202.5190 [hep-ph]
  73. 73.
    T. Cheng, J. Li, T. Li, D.V. Nanopoulos, C. Tong, arXiv: 1202.6088 [hep-ph]
  74. 74.
    M. Asano, S. Matsumoto, M. Senami, H. Sugiyama, arXiv:1202.6318 [hep-ph]
  75. 75.
    J. Cao, Z. Heng, J.M. Yang, J. Zhu, arXiv:1203.0694 [hep-ph]
  76. 76.
    A. Choudhury, A. Datta, J. High Energy Phys. 1206, 006 (2012). arXiv:1203.4106 [hep-ph] ADSCrossRefGoogle Scholar
  77. 77.
    P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, arXiv: 1203.4254 [hep-ph]
  78. 78.
    M.A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi, arXiv:1204.2856 [hep-ph]
  79. 79.
    F. Brümmer, S. Kraml, S. Kulkarni, arXiv:1204.5977 [hep-ph]
  80. 80.
    J.L. Evans, M. Ibe, T.T. Yanagida, arXiv:1204.6085 [hep-ph]
  81. 81.
    A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Y.-L.S. Tsai, arXiv:1206.0264 [hep-ph]
  82. 82.
    U. Ellwanger, J. High Energy Phys. 1203, 044 (2012). arXiv: 1112.3548 [hep-ph] ADSCrossRefGoogle Scholar
  83. 83.
    L.J. Hall, D. Pinner, J.T. Ruderman, arXiv:1112.2703 [hep-ph]
  84. 84.
    J.F. Gunion, Y. Jiang, S. Kraml, arXiv:1201.0982 [hep-ph]
  85. 85.
    S.F. King, M. Mühlleitner, R. Nevzorov, Nucl. Phys. B 860, 207 (2012). arXiv:1201.2671 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    Z. Kang, J. Li, T. Li, arXiv:1201.5305 [hep-ph]
  87. 87.
    D.A. Vasquez, G. Belanger, C. Boehm, J. Da Silva, P. Richardson, C. Wymant, arXiv:1203.3446 [hep-ph]
  88. 88.
    U. Ellwanger, C. Hugonie, arXiv:1203.5048 [hep-ph]
  89. 89.
    E. Gabrielli, K. Kannike, B. Mele, A. Racioppi, M. Raidal, arXiv:1204.0080 [hep-ph]
  90. 90.
    J. Rathsman, T. Rossler, arXiv:1206.1470 [hep-ph]
  91. 91.
    J. Cao, Z. Heng, J.M. Yang, Y. Zhang, J. Zhu, J. High Energy Phys. 1203, 086 (2012). arXiv:1202.5821 [hep-ph] ADSCrossRefGoogle Scholar
  92. 92.
    J. Kublbeck, M. Bohm, A. Denner, Comput. Phys. Commun. 60, 165 (1990) MathSciNetADSCrossRefGoogle Scholar
  93. 93.
    A. Denner, H. Eck, O. Hahn, J. Kublbeck, Phys. Lett. B 291, 278 (1992) ADSCrossRefGoogle Scholar
  94. 94.
    A. Denner, H. Eck, O. Hahn, J. Kublbeck, Nucl. Phys. B 387, 467 (1992) ADSCrossRefGoogle Scholar
  95. 95.
    J. Kublbeck, H. Eck, R. Mertig, Nucl. Phys. Proc. Suppl. 29A, 204 (1992) ADSGoogle Scholar
  96. 96.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv: hep-ph/0012260 ADSzbMATHCrossRefGoogle Scholar
  97. 97.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349 ADSzbMATHCrossRefGoogle Scholar
  98. 98.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  99. 99.
    T. Hahn, Comput. Phys. Commun. 178, 217 (2008). arXiv: hep-ph/0611273 ADSCrossRefGoogle Scholar
  100. 100.
    G.J. van Oldenborgh, Comput. Phys. Commun. 66, 1 (1991) ADSzbMATHCrossRefGoogle Scholar
  101. 101.
    J.A.M. Vermaseren, arXiv:math-ph/0010025
  102. 102.
    N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009). arXiv:0806.4194 [hep-ph] ADSCrossRefGoogle Scholar
  103. 103.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  104. 104.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605 (2011). arXiv:1102.1898 [hep-ph] ADSCrossRefGoogle Scholar
  105. 105.
    U. Ellwanger, M. Rausch de Traubenberg, C.A. Savoy, Nucl. Phys. B 492, 21 (1997). arXiv:hep-ph/9611251 ADSzbMATHGoogle Scholar
  106. 106.
    S.F. King, P.L. White, Phys. Rev. D 52, 4183 (1995). arXiv: hep-ph/9505326 ADSCrossRefGoogle Scholar
  107. 107.
    M. Masip, R. Munoz-Tapia, A. Pomarol, Phys. Rev. D 57, R5340 (1998). arXiv:hep-ph/9801437 ADSCrossRefGoogle Scholar
  108. 108.
    LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 ADSCrossRefGoogle Scholar
  109. 109.
    LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 ADSCrossRefGoogle Scholar
  110. 110.
    F. Mahmoudi, J. Rathsman, O. Stål, L. Zeune, Eur. Phys. J. C 71, 1608 (2011). arXiv:1012.4490 [hep-ph] ADSCrossRefGoogle Scholar
  111. 111.
    CMS Collaboration, CMS PAS HIG-11-020 Google Scholar
  112. 112.
    CMS Collaboration, CMS-PAS-HIG-11-029 Google Scholar
  113. 113.
    ATLAS Collaboration, ATLAS-CONF-2011-161 Google Scholar
  114. 114.
    CMS Collaboration, CMS-HIG-11-030 Google Scholar
  115. 115.
    ATLAS Collaboration, arXiv:1112.2577 [hep-ex]
  116. 116.
    CMS Collaboration, CMS-HIG-11-024 Google Scholar
  117. 117.
    T. Figy, S. Palmer, G. Weiglein, J. High Energy Phys. 1202, 105 (2012). arXiv:1012.4789 [hep-ph] ADSCrossRefGoogle Scholar
  118. 118.
    W. Hollik, T. Plehn, M. Rauch, H. Rzehak, Phys. Rev. Lett. 102, 091802 (2009). arXiv:0804.2676 [hep-ph] ADSCrossRefGoogle Scholar
  119. 119.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  120. 120.
    ATLAS Collaboration, ATLAS-CONF-2012-033 Google Scholar
  121. 121.
    CMS Collaboration, CMS-PAS-SUS-11-016 Google Scholar
  122. 122.
    M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180 [hep-ph] ADSCrossRefGoogle Scholar
  123. 123.
    G. Bennett et al., The Muon g−2 Collaboration. Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008 ADSCrossRefGoogle Scholar
  124. 124.
    G. Bennett et al., Phys. Rev. D 73, 072003 (2006). arXiv: hep-ex/0602035 ADSCrossRefGoogle Scholar
  125. 125.
    J.F. Gunion, D. Hooper, B. McElrath, Phys. Rev. D 73, 015011 (2006). arXiv:hep-ph/0509024 ADSCrossRefGoogle Scholar
  126. 126.
    J.F. Gunion, J. High Energy Phys. 0908, 032 (2009). arXiv: 0808.2509 [hep-ph] ADSCrossRefGoogle Scholar
  127. 127.
    F. Domingo, U. Ellwanger, J. High Energy Phys. 0807, 079 (2008). arXiv:0806.0733 [hep-ph] ADSCrossRefGoogle Scholar
  128. 128.
    G. Hiller, Phys. Rev. D 70, 034018 (2004). arXiv:hep-ph/0404220 MathSciNetADSCrossRefGoogle Scholar
  129. 129.
    F. Domingo, U. Ellwanger, J. High Energy Phys. 0712, 090 (2007). arXiv:0710.3714 [hep-ph] ADSCrossRefGoogle Scholar
  130. 130.
    B.A. Dobrescu, G.L. Landsberg, K.T. Matchev, Phys. Rev. D 63, 075003 (2001). arXiv:hep-ph/0005308 ADSCrossRefGoogle Scholar
  131. 131.
    B.A. Dobrescu, K.T. Matchev, J. High Energy Phys. 0009, 031 (2000). arXiv:hep-ph/0008192 ADSCrossRefGoogle Scholar
  132. 132.
    K. Cheung, J. Song, Q.S. Yan, Phys. Rev. Lett. 99, 031801 (2007). arXiv:hep-ph/0703149 ADSCrossRefGoogle Scholar
  133. 133.
    M.A. Sanchis-Lozano, arXiv:0709.3647 [hep-ph]
  134. 134.
    E. Barberio et al. (Heavy Flavor Averaging Group (HFAG)), arXiv:hep-ex/0603003. See also updated data on the HFAG webpage
  135. 135.
    CMS and LHCb Collaborations, CMS-PAS-BPH-11-019, LHCb-CONF-2011-047 Google Scholar
  136. 136.
    D. Asner et al. (Heavy Flavor Averaging Group (HFAG)), arXiv:1010.1589 [hep-ex]
  137. 137.
    A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006). arXiv:hep-ex/0609040 ADSCrossRefGoogle Scholar
  138. 138.
    CMS Collaboration, CMS-PAS-HIG-12-001 Google Scholar
  139. 139.
    J. Cao, Z. Heng, T. Liu, J.M. Yang, Phys. Lett. B 703, 462 (2011). arXiv:1103.0631 [hep-ph] ADSCrossRefGoogle Scholar
  140. 140.
    N.D. Christensen, T. Han, S. Su, arXiv:1203.3207 [hep-ph]
  141. 141.
    A. Arvanitaki, G. Villadoro, J. High Energy Phys. 1202, 144 (2012). arXiv:1112.4835 [hep-ph] ADSCrossRefGoogle Scholar
  142. 142.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139 (2000). arXiv:hep-ph/0003022 ADSCrossRefGoogle Scholar
  143. 143.
    M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, arXiv: hep-ph/0202167
  144. 144.
    R. Hempfling, Phys. Rev. D 49, 6168 (1994) ADSCrossRefGoogle Scholar
  145. 145.
    L. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309 ADSCrossRefGoogle Scholar
  146. 146.
    M. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253 ADSCrossRefGoogle Scholar
  147. 147.
    M. Carena, D. Garcia, U. Nierste, C. Wagner, Nucl. Phys. B 577, 577 (2000). arXiv:hep-ph/9912516 CrossRefGoogle Scholar
  148. 148.
    D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 [hep-ph] ADSCrossRefGoogle Scholar
  149. 149.
    D. Noth, M. Spira, J. High Energy Phys. 1106, 084 (2011). arXiv:1001.1935 [hep-ph] ADSCrossRefGoogle Scholar
  150. 150.
    J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983) ADSCrossRefGoogle Scholar
  151. 151.
    M. Claudson, L. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983) ADSCrossRefGoogle Scholar
  152. 152.
    C. Kounnas, A. Lahanas, D. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984) ADSCrossRefGoogle Scholar
  153. 153.
    J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988) ADSCrossRefGoogle Scholar
  154. 154.
    J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294 ADSCrossRefGoogle Scholar
  155. 155.
    P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199 (1994). arXiv: hep-ph/9403306 ADSCrossRefGoogle Scholar
  156. 156.
    A. Strumia, Nucl. Phys. B 482, 24 (1996). arXiv:hep-ph/9604417 ADSCrossRefGoogle Scholar
  157. 157.
    U. Ellwanger, Phys. Lett. B 698, 293 (2011). arXiv:1012.1201 [hep-ph] ADSCrossRefGoogle Scholar
  158. 158.
    G. Keller, D. Wyler, Nucl. Phys. B 274, 410 (1986) ADSCrossRefGoogle Scholar
  159. 159.
    J.F. Gunion, H.E. Haber, C. Kao, Phys. Rev. D 46, 2907 (1992) ADSCrossRefGoogle Scholar
  160. 160.
    P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 497 (1994) ADSCrossRefGoogle Scholar
  161. 161.
    G.A. Moortgat-Pick, S. Hesselbach, F. Franke, H. Fraas, J. High Energy Phys. 0506, 048 (2005). arXiv:hep-ph/0502036 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  • R. Benbrik
    • 1
  • M. Gomez Bock
    • 2
  • S. Heinemeyer
    • 1
  • O. Stål
    • 3
    Email author
  • G. Weiglein
    • 3
  • L. Zeune
    • 3
  1. 1.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  2. 2.Facultad de Ciencias Físico-Matemáticas BeneméritaUniversidad Autónoma de PueblaPueMexico
  3. 3.DESYHamburgGermany

Personalised recommendations