Constraints on supersymmetry from LHC data on SUSY searches and Higgs bosons combined with cosmology and direct dark matter searches

  • C. Beskidt
  • W. de Boer
  • D. I. Kazakov
  • F. Ratnikov
Regular Article - Theoretical Physics


The ATLAS and CMS experiments did not find evidence for Supersymmetry using close to 5/fb of published LHC data at a center-of-mass energy of 7 TeV. We combine these LHC data with data on \(B^{0}_{s}\to \mu^{+}\mu^{-}\) (LHCb experiment), the relic density (WMAP and other cosmological data) and upper limits on the dark matter scattering cross sections on nuclei (XENON100 data). The excluded regions in the constrained Minimal Supersymmetric SM (CMSSM) lead to gluinos excluded below 1270 GeV and dark matter candidates below 220 GeV for values of the scalar masses (m0) below 1500 GeV. For large m0 values the limits of the gluinos and the dark matter candidate are reduced to 970 GeV and 130 GeV, respectively. If a Higgs mass of 125 GeV is imposed in the fit, the preferred SUSY region is above this excluded region, but the size of the preferred region is strongly dependent on the assumed theoretical error.


  1. 1.
    H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117, 75–263 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    W. de Boer, Grand unified theories and supersymmetry in particle physics and cosmology. Prog. Part. Nucl. Phys. 33, 201–302 (1994). arXiv:hep-ph/9402266 ADSCrossRefGoogle Scholar
  3. 3.
    S.P. Martin, A supersymmetry primer, in Perspectives on Supersymmetry II, ed. by G. Kane (1997). arXiv:hep-ph/9709356 Google Scholar
  4. 4.
    D. Kazakov, Supersymmetry on the run: LHC and dark matter. Nucl. Phys. B, Proc. Suppl. 203–204, 118–154 (2010). arXiv:1010.5419 CrossRefGoogle Scholar
  5. 5.
    E.W. Kolb, M.S. Turner, The early universe. Front. Phys. 69, 1–547 (1990) MathSciNetADSGoogle Scholar
  6. 6.
    G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267, 195–373 (1996). arXiv:hep-ph/9506380 ADSCrossRefGoogle Scholar
  7. 7.
    G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). arXiv:hep-ph/0404175 ADSCrossRefGoogle Scholar
  8. 8.
    E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011). arXiv:1001.4538 ADSCrossRefGoogle Scholar
  9. 9.
    O. Buchmueller, R. Cavanaugh, D. Colling et al., Supersymmetry and dark matter in light of LHC 2010 and Xenon100 data. Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 ADSCrossRefGoogle Scholar
  10. 10.
    O. Buchmueller, R. Cavanaugh, A. De Roeck et al., Supersymmetry in light of 1/fb of LHC data. arXiv:1110.3568
  11. 11.
    G. Bertone, D. Cerdeno, M. Fornasa et al., Global fits of the cMSSM including the first LHC and XENON100 data. J. Cosmol. Astropart. Phys. 1201, 015 (2012). arXiv:1107.1715 ADSCrossRefGoogle Scholar
  12. 12.
    B. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits. Phys. Rev. D 83, 095019 (2011). arXiv:1102.3149 ADSCrossRefGoogle Scholar
  13. 13.
    B. Allanach, T. Khoo, C. Lester et al., The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit. J. High Energy Phys. 1106, 035 (2011). arXiv:1103.0969 ADSCrossRefGoogle Scholar
  14. 14.
    M. Farina, M. Kadastik, D. Pappadopulo et al., Implications of XENON100 and LHC results for dark matter models. Nucl. Phys. B 853, 607–624 (2011). arXiv:1104.3572 ADSMATHCrossRefGoogle Scholar
  15. 15.
    A. Strumia, Implications of First LHC results. arXiv:1107.1259
  16. 16.
    S. Akula, D. Feldman, Z. Liu et al., New constraints on dark matter from CMS and ATLAS data. Mod. Phys. Lett. A 26, 1521–1535 (2011). arXiv:1103.5061 ADSCrossRefGoogle Scholar
  17. 17.
    R. Trotta, F. Feroz, M.P. Hobson et al., The impact of priors and observables on parameter inferences in the constrained MSSM. J. High Energy Phys. 0812, 024 (2008). arXiv:0809.3792 ADSCrossRefGoogle Scholar
  18. 18.
    Y. Akrami, P. Scott, J. Edsjo et al., A profile likelihood analysis of the constrained MSSM with genetic algorithms. J. High Energy Phys. 1004, 057 (2010). arXiv:0910.3950 ADSCrossRefGoogle Scholar
  19. 19.
    F. Feroz, B.C. Allanach, M. Hobson et al., Bayesian selection of sign(mu) within mSUGRA in global fits including WMAP5 results. J. High Energy Phys. 0810, 064 (2008). arXiv:0807.4512 ADSCrossRefGoogle Scholar
  20. 20.
    S. Sekmen, S. Kraml, J. Lykken et al., Interpreting LHC SUSY searches in the phenomenological MSSM. arXiv:1109.5119
  21. 21.
    A.H. Chamseddine, R.L. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982) ADSCrossRefGoogle Scholar
  22. 22.
    C.F. Kolda, L. Roszkowski, J.D. Wells et al., Predictions for constrained minimal supersymmetry with bottom tau mass unification. Phys. Rev. D 50, 3498–3507 (1994). arXiv:hep-ph/9404253 ADSCrossRefGoogle Scholar
  23. 23.
    W. de Boer, M. Huber, C. Sander et al., A global fit to the anomalous magnetic moment, bX/ and Higgs limits in the constrained MSSM. Phys. Lett. B 515, 283–290 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    F. Feroz, K. Cranmer, M. Hobson et al., Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. J. High Energy Phys. 1106, 042 (2011). arXiv:1101.3296 ADSCrossRefGoogle Scholar
  25. 25.
    C. Beskidt, W. de Boer, D. Kazakov et al., Constraints from the decay \(B_{s}^{0} \rightarrow; \mu^{+} \mu^{-}\) and LHC limits on supersymmetry. Phys. Lett. B 705, 493–497 (2011). arXiv:1109.6775 ADSCrossRefGoogle Scholar
  26. 26.
    C. Beskidt et al., Constraints on supersymmetry from relic density compared with future Higgs searches at the LHC. Phys. Lett. B 695, 143–148 (2011). arXiv:1008.2150 ADSCrossRefGoogle Scholar
  27. 27.
  28. 28.
    Muon G-2 Collaboration, Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035. Summary of E821 Collaboration measurements of the muon anomalous magnetic moment, each reported earlier in Letters or Brief Reports. Revised version submitted to Phys. Rev. D CrossRefGoogle Scholar
  29. 29.
    LHCb collaboration, Strong constraints on the rare decays B sμ + μ and B 0μ + μ . Phys. Rev. Lett. 108, 231801 (2012). arXiv:1203.4493 CrossRefGoogle Scholar
  30. 30.
    ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaborations LEP Working Group for Higgs Boson Searches Collaboration, Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C 47, 547–587 (2006). arXiv:hep-ex/0602042 CrossRefGoogle Scholar
  31. 31.
    CMS Collaboration, Search for neutral Higgs bosons decaying to tau pairs in pp collisions at sqrt(s)=7 TeV. Phys. Lett. B 713, 68–90 (2012). arXiv:1202.4083 ADSCrossRefGoogle Scholar
  32. 32.
    ATLAS Collaboration, Search for neutral MSSM Higgs bosons decaying to tau tau pairs in proton-proton collisions at 7 TeV with the ATLAS detector. arXiv:1107.5003
  33. 33.
    ATLAS Collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS Detector in s=7 TeV proton-proton collisions. arXiv:1208.0949
  34. 34.
    CMS Collaboration, Search for supersymmetry with the razor variables at CMS. CMS-PAS-SUS-12-005, 2012 Google Scholar
  35. 35.
    E. Aprile et al., Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 ADSCrossRefGoogle Scholar
  36. 36.
    F. James, M. Roos, Minuit: A system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975) ADSCrossRefGoogle Scholar
  37. 37.
    G. Belanger, F. Boudjema, A. Pukhov et al., micrOMEGAs: a tool for dark matter studies. arXiv:1005.4133
  38. 38.
    A. Pukhov, G. Belanger, F. Boudjema et al., Tools for dark matter in particle and astroparticle physics. PoS ACAT2010, 011 (2010). arXiv:1007.5023 Google Scholar
  39. 39.
    A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331 ADSMATHCrossRefGoogle Scholar
  40. 40.
    Particle Data Group Collaboration, Review of particle physics. J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    CMS Collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s)=7 TeV. Phys. Lett. B 710, 26–48 (2012). arXiv:1202.1488 ADSCrossRefGoogle Scholar
  42. 42.
    ATLAS Collaboration, Combined search for the Standard Model Higgs boson in pp collisions at sqrt(s)=7 TeV with the ATLAS detector. Phys. Rev. D. 86, 032003 (2012). arXiv:1207.0319 ADSCrossRefGoogle Scholar
  43. 43.
    G. Belanger, F. Boudjema, A. Pukhov et al., Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). . arXiv:0803.2360 ADSMATHCrossRefGoogle Scholar
  44. 44.
    J. Cao, K.-i. Hikasa, W. Wang et al., Constraints of dark matter direct detection experiments on the MSSM and implications on LHC Higgs search. Phys. Rev. D 82, 051701 (2010). arXiv:1006.4811 ADSCrossRefGoogle Scholar
  45. 45.
    J.M. Alarcon, J.M. Camalich, J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term. Phys. Rev. D 85, 051503 (2012). arXiv:1110.3797 ADSCrossRefGoogle Scholar
  46. 46.
    M. Weber, W. de Boer, Determination of the local dark matter density in our galaxy. Astron. Astrophys. 509, A25 (2010). arXiv:0910.4272 ADSCrossRefGoogle Scholar
  47. 47.
    W. de Boer, M. Weber, The dark matter density in the solar neighborhood reconsidered. J. Cosmol. Astropart. Phys. 1104, 002 (2011). arXiv:1011.6323 CrossRefGoogle Scholar
  48. 48.
    P. Salucci, F. Nesti, G. Gentile, C.F. Martins, The dark matter density at the Sun’s location. Astron. Astrophys. 523, A83 (2010). arXiv:1003.3101 ADSCrossRefGoogle Scholar
  49. 49.
    R. Catena, P. Ullio, A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 1008, 004 (2010). arXiv:0907.0018 ADSCrossRefGoogle Scholar
  50. 50.
    S. Heinemeyer, Private communication Google Scholar
  51. 51.
    U. Ellwanger, C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale. arXiv:1203.5048
  52. 52.
    Gianotti, for the ATLAS Collaboration, J. Incandela, for the CMS Collaboration, ATLAS-CONF-2012-093, CMS-PAS-HIG-12-020, CERN Seminar, July 4th, 2012;

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  • C. Beskidt
    • 1
  • W. de Boer
    • 1
  • D. I. Kazakov
    • 2
    • 3
  • F. Ratnikov
    • 1
    • 3
  1. 1.Institut für Experimentelle KernphysikKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations