Advertisement

The European Physical Journal C

, 72:2165 | Cite as

Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime

  • Zhe Chang
  • Sai WangEmail author
Regular Article - Theoretical Physics

Abstract

Recently, Kostelecky [V.A. Kostelecky, Phys. Lett. B 701, 137 (2011)] proposed that the spontaneous Lorentz invariance violation (sLIV) is related to Finsler geometry. Finsler spacetime is intrinsically anisotropic and naturally induces Lorentz invariance violation (LIV). In this paper, the electromagnetic field is investigated in locally Minkowski spacetime. The Lagrangian is presented explicitly for the electromagnetic field. It is compatible with the one in the standard model extension (SME). We show the Lorentz-violating Maxwell equations as well as the electromagnetic wave equation. The formal plane wave solution is obtained for the electromagnetic wave. The speed of light may depend on the direction of light and the lightcone may be enlarged or narrowed. The LIV effects could be viewed as influence from an anisotropic media on the electromagnetic wave. In addition, birefringence of light will not emerge at the leading order in this model. A constraint on the spacetime anisotropy is obtained from observations on gamma-ray bursts (GRBs).

Keywords

Electromagnetic Field Minkowski Spacetime Lorentz Symmetry Finsler Geometry Standard Model Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank useful discussions with Yunguo Jiang, Ming-Hua Li, Xin Li, Hai-Nan Lin. The author (S. Wang) thanks useful discussions with Jian-Ping Dai, Dan-Ning Li, and Xiao-Gang Wu. This work is supported by the National Natural Science Fund of China under Grant No. 11075166.

References

  1. 1.
    G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001) ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    G. Amelino-Camelia, Nature 418, 34 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J. Alfaro, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    J. Alfaro, H.A. Morales-Tecotl, L.F. Urrutia, Phys. Rev. D 65, 103509 (2002) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    D. Sudarsky et al., Phys. Rev. D 68, 024010 (2003) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. Bernabeu, N.E. Mavromatos, S. Sarkar, Phys. Rev. D 74, 045014 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    A.G. Cohen, S.L. Glashow, Phys. Rev. Lett. 97, 021601 (2006) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    T.G. Pavlopoulos, Phys. Rev. 159, 1106 (1967) ADSCrossRefGoogle Scholar
  12. 12.
    V.A. Kostelecky, S. Samuel, Phys. Rev. D 39, 683 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    V.A. Kostelecky, Phys. Lett. B 701, 137 (2011) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959) zbMATHCrossRefGoogle Scholar
  17. 17.
    D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry. Graduate Texts in Mathematics, vol. 200 (Springer, New York, 2000) zbMATHCrossRefGoogle Scholar
  18. 18.
    Z. Shen, Lectures on Finsler Geometry (World Scientific, Singapore, 2001) zbMATHCrossRefGoogle Scholar
  19. 19.
    H.C. Wang, J. Lon. Math. Soc. s1-22(1), 5 (1947). doi: 10.1112/jlms/s1-22.1.5 CrossRefGoogle Scholar
  20. 20.
    S.F. Rutz, Contemp. Math. 169, 289 (1996) MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Deng, Z. Hou, Pac. J. Math. 207, 1 (2002) MathSciNetCrossRefGoogle Scholar
  22. 22.
    X. Li, Z. Chang, arXiv:1010.2020 [gr-qc]
  23. 23.
    G. Randers, Phys. Rev. 59, 195–199 (1941) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    G.W. Gibbons, J. Gomis, C.N. Pope, Phys. Rev. D 76, 081701 (2007) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    B. Li, Z. Shen, Int. J. Math. 18, 1 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    E.C.G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938) zbMATHGoogle Scholar
  28. 28.
    E.C.G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938) Google Scholar
  29. 29.
    M. Cambiaso, R. Lehnert, R. Potting, Phys. Rev. D 85, 085023 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    V.A. Kostelecky, N. Russell, Rev. Mod. Phys. 83, 11 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    A. Kostelecky, M. Mewes, Phys. Rev. D 80, 015020 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    J. Lipa et al., Phys. Rev. Lett. 90, 060403 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    H. Muller, S. Herrmann, C. Braxmaier, S. Schiller, A. Peters, Phys. Rev. Lett. 91, 020401 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    P. Wolf et al., Gen. Relativ. Gravit. 36, 2351 (2004) ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    P. Wolf et al., Phys. Rev. D 70, 051902 (2004) ADSCrossRefGoogle Scholar
  36. 36.
    M.E. Tobar et al., Phys. Rev. D 71, 025004 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    V.W. Hughes, H.G. Robinson, V. Beltran-Lopez, Phys. Rev. Lett. 4, 342 (1960) ADSCrossRefGoogle Scholar
  38. 38.
    R.W.P. Drever, Philos. Mag. 6, 683 (1961) ADSCrossRefGoogle Scholar
  39. 39.
    V.A. Kostelecky, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001) ADSCrossRefGoogle Scholar
  40. 40.
    V.A. Kostelecky, M. Mewes, Phys. Rev. D 66, 056005 (2002) ADSCrossRefGoogle Scholar
  41. 41.
    R. Bluhm, Lect. Notes Phys. 702, 191 (2006) CrossRefGoogle Scholar
  42. 42.
    Z. Chang, X. Li, S. Wang, Mod. Phys. Lett. A 27, 1250058 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    Z. Chang, X. Li, S. Wang, Phys. Lett. B 710, 430 (2012) ADSCrossRefGoogle Scholar
  44. 44.
    Z. Chang, X. Li, S. Wang, arXiv:1201.1368
  45. 45.
    A.A. Abdo et al., Science 323, 1688 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    A.A. Abdo et al., Astrophys. J. 706, L138 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    A.A. Abdo et al., Nature 462, 331 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    M. Ackermann et al., Astrophys. J. 729, 114 (2011) ADSCrossRefGoogle Scholar
  49. 49.
    Z. Chang, Y. Jiang, H.-N. Lin, Astropart. Phys. arXiv:1201.3413. doi: 10.1016/j.astropartphys.2012.04.006
  50. 50.
    Z. Bosnjak, P. Kumar, Mon. Not. R. Astron. Soc. (2012). doi: 10.1111/j.1745-3933.2011.01202.x Google Scholar
  51. 51.
    R.J. Nemiroff, J. Holmes, R. Connolly, arXiv:1109.5191
  52. 52.
    U. Jacob, T. Piran, J. Cosmol. Astropart. Phys. 01, 031 (2008) ADSCrossRefGoogle Scholar
  53. 53.
    L. Shao, Z. Xiao, B.-Q. Ma, Astropart. Phys. 33, 312 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina

Personalised recommendations