The European Physical Journal C

, 72:2158 | Cite as

Bremsstrahlung simulation in Kπl ± ν l (γ) decays

  • Qingjun XuEmail author
  • Z. Was
Regular Article - Theoretical Physics


In physics simulation chains, the PHOTOS Monte Carlo program is often used to simulate QED effects in decays of intermediate particles and resonances.

The program is based on an exact multiphoton phase space. In general, the matrix element is obtained from iterations of a universal kernel and approximations are involved. To evaluate the program’s precision, it is necessary to formulate and implement within the generator the exact matrix element, which depends on the decay channel. Then, all terms necessary for non-leading logarithms are taken into account. In the present letter we focus on the decay Kπl ± ν l and tests of the PHOTOS Monte Carlo program. We conclude that there is a 0.2 % relative precision in the implementation of the hard photon matrix element into the emission kernel, including the case where approximations are used.


Matrix Element Virtual Correction Semileptonic Decay Real Emission Collinear Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Tomasz Przedzinski for help in obtaining the numerical results presented in this paper and Brigitte Bloch-Devaux for help in improving the paper readability. We would like to thank the referee of EPJC for identifying an error in our handling of formula (14) of Ref. [17].

Work of Q. Xu is supported by China–Poland inter-governmental cooperation grant 34-13, National Natural Science Foundation of China under Grant No. 11147023, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ12A05003.

Work of ZW is supported in part by the Polish Ministry of Science and Higher Education grant No. 1289/B/H03/2009/37.


  1. 1.
    M. Antonelli, V. Cirigliano, G. Isidori, F. Mescia, M. Moulson et al., Eur. Phys. J. C 69, 399 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    S. Actis et al., Eur. Phys. J. C 66, 585 (2010) CrossRefGoogle Scholar
  3. 3.
    D.R. Yennie, S. Frautschi, H. Suura, Ann. Phys. (NY) 13, 379 (1961) ADSCrossRefGoogle Scholar
  4. 4.
    S. Jadach, B.F.L. Ward, Phys. Rev. D 38, 2897 (1988) ADSCrossRefGoogle Scholar
  5. 5.
    S. Jadach, Z. Wa̧s, B.F.L. Ward, Comput. Phys. Commun. 130, 260 (2000). Up to date source available from ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    E. Barberio, B. van Eijk, Z. Wa̧s, Comput. Phys. Commun. 66, 115 (1991) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    E. Barberio, Z. Wa̧s, Comput. Phys. Commun. 79, 291 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    P. Golonka, Z. Was, Eur. Phys. J. C 45, 97 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    P. Golonka, Z. Was, Eur. Phys. J. C 50, 53 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    G. Nanava, Z. Was, Eur. Phys. J. C 51, 569 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    G. Nanava, Q. Xu, Z. Was, Eur. Phys. J. C 70, 673 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was, Z. Was, Comput. Phys. Commun. 183, 821 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Boulder, Westview, 1995) Google Scholar
  14. 14.
    S. Weinberg, Physica A 96, 327 (1979). Festschrift honoring Julian Schwinger on his 60th birthday ADSCrossRefGoogle Scholar
  15. 15.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    H. Leutwyler, Ann. Phys. 235, 165 (1994) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    V. Cirigliano, M. Giannotti, H. Neufeld, J. High Energy Phys. 0811, 006 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    V. Cirigliano, in PoS (KAON), 007 (2008) Google Scholar
  19. 19.
    Y. Bystritskiy, S. Gevorkyan, E. Kuraev, Eur. Phys. J. C 64, 47 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    M. Jeżabek, Z. Wa̧s, S. Jadach, J.H. Kühn, Comput. Phys. Commun. 70, 69 (1992) ADSCrossRefGoogle Scholar
  21. 21.
    P. Golonka, T. Pierzchala, Z. Was, Comput. Phys. Commun. 157, 39 (2004) ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    N. Davidson, P. Golonka, T. Przedzinski, Z. Was, Comput. Phys. Commun. 182, 779 (2011) ADSzbMATHCrossRefGoogle Scholar
  23. 23.
  24. 24.
    Particle Data Group Collaboration, K. Nakamura et al., J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    J.R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C 50, 329 (2007). [Erratum-ibid. C 52, 1021 (2007)], hep-ex/0702015 ADSCrossRefGoogle Scholar
  26. 26.
    N. Davidson, T. Przedzinski, Z. Was, PHOTOS interface in C++: technical and physics documentation. arXiv:1011.0937 [hep-ph]

Copyright information

© Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsHangzhou Normal UniversityHangzhouChina
  2. 2.Institute of Nuclear PhysicsPANKrakówPoland
  3. 3.Theory Group, Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations