Advertisement

The European Physical Journal C

, 72:2156 | Cite as

The new look pMSSM with neutralino and gravitino LSPs

  • Matthew W. Cahill-Rowley
  • JoAnne L. Hewett
  • Stefan Hoeche
  • Ahmed IsmailEmail author
  • Thomas G. Rizzo
Regular Article - Theoretical Physics

Abstract

The pMSSM provides a broad perspective on SUSY phenomenology. In this paper we generate two new, very large, sets of pMSSM models with sparticle masses extending up to 4 TeV, where the lightest supersymmetric particle (LSP) is either a neutralino or gravitino. The existence of a gravitino LSP necessitates a detailed study of its cosmological effects and we find that Big Bang Nucleosynthesis places strong constraints on this scenario. Both sets are subjected to a global set of theoretical, observational and experimental constraints resulting in a sample of ∼225k viable models for each LSP type. The characteristics of these two model sets are briefly compared. We confront the neutralino LSP model set with searches for SUSY at the 7 TeV LHC using both the missing (MET) and non-missing E T ATLAS analyses. In the MET case, we employ Monte Carlo estimates of the ratios of the SM backgrounds at 7 and 8 TeV to rescale the 7 TeV data-driven ATLAS backgrounds to 8 TeV. This allows us to determine the pMSSM parameter space coverage for this collision energy. We find that an integrated luminosity of ∼5–20 fb−1 at 8 TeV would yield a substantial increase in this coverage compared to that at 7 TeV and can probe roughly half of the model set. If the pMSSM is not discovered during the 8 TeV run, then our model set will be essentially void of gluinos and lightest first and second generation squarks that are ≲700–800 GeV, which is much less than the analogous mSUGRA bound. Finally, we demonstrate that non-MET SUSY searches continue to play an important role in exploring the pMSSM parameter space. These two pMSSM model sets can be used as the basis for investigations for years to come.

Keywords

Dark Matter Minimal Supersymmetric Standard Model Light Supersymmetric Particle Light Neutralino Gravitino Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to John Conway for providing an updated version of PGS, and for discussions with J. Conley, R. Cotta, T. Eifert, J. Gainer, M.P. Le, and T. Plehn. S.H.’s work was supported in part by the National Science Foundation, grant NSF-PHY-0705682 (the LHC Theory Initiative). This research used the Open Science Grid production infrastructure [135].

References

  1. 1.
    For an overview of MSSM physics and phenomenology, see M. Drees, R. Godbole, P. Roy, Theory and Phenomenology of Sparticles: An Account of Four-Dimensional N=1 Supersymmetry in High Energy Physics (World Scientific, Hackensack, 2004), 555 pp. Google Scholar
  2. 2.
    H. Baer, X. Tata, Weak Scale Supersymmetry: From Superfields to Scattering Events (Cambridge Univ. Press, Cambridge, 2006), 537 pp. zbMATHCrossRefGoogle Scholar
  3. 3.
    S.P. Martin, in Perspectives on Supersymmetry II, ed. by G.L. Kane, pp. 1–153. arXiv:hep-ph/9709356
  4. 4.
    H.K. Dreiner, H.E. Haber, S.P. Martin, Phys. Rep. 494, 1 (2010). arXiv:0812.1594 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  6. 6.
    D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J.D. Lykken, L.-T. Wang, Phys. Rep. 407, 1 (2005). arXiv:hep-ph/0312378 ADSCrossRefGoogle Scholar
  7. 7.
    L. Pape, D. Treille, Rep. Prog. Phys. 69, 2843 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex] ADSCrossRefGoogle Scholar
  9. 9.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]
  10. 10.
    For a recent overview, see talks by R. Bruneliere (ATLAS) and M. Stoye (CMS) given at La Thuile 2012, Aosta Valley, Italy, 26 Feb.–3 Mar. 2012 Google Scholar
  11. 11.
    A.H. Chamseddine, R.L. Arnowitt, P. Nath, Phys. Rev. Lett. 49, 970 (1982) ADSCrossRefGoogle Scholar
  12. 12.
    E. Cremmer, P. Fayet, L. Girardello, Phys. Lett. B 122, 41 (1983) ADSCrossRefGoogle Scholar
  13. 13.
    G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999). arXiv:hep-ph/9801271 ADSCrossRefGoogle Scholar
  14. 14.
    M. Dine, A.E. Nelson, Y. Nir, Y. Shirman, Phys. Rev. D 53, 2658 (1996). arXiv:hep-ph/9507378 ADSCrossRefGoogle Scholar
  15. 15.
    J. Alwall, P. Schuster, N. Toro, Phys. Rev. D 79, 075020 (2009). arXiv:0810.3921 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    D.S.M. Alves, E. Izaguirre, J.G. Wacker, J. High Energy Phys. 1110, 012 (2011). arXiv:1102.5338 [hep-ph] ADSCrossRefGoogle Scholar
  17. 17.
    D. Alves et al. (LHC New Physics Working Group Collaboration), arXiv:1105.2838 [hep-ph]
  18. 18.
    A. Djouadi, J.L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426 (2007). arXiv:hep-ph/0211331 ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    C.F. Berger, J.S. Gainer, J.L. Hewett, T.G. Rizzo, J. High Energy Phys. 0902, 023 (2009). arXiv:0812.0980 [hep-ph] MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Eur. Phys. J. C 71, 1697 (2011). arXiv:1009.2539 [hep-ph] ADSCrossRefGoogle Scholar
  21. 21.
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Phys. Rev. D, submitted. arXiv:1103.1697 [hep-ph]
  22. 22.
    S. Sekmen, S. Kraml, J. Lykken, F. Moortgat, S. Padhi, L. Pape, M. Pierini, H.B. Prosper et al., J. High Energy Phys. 1202, 075 (2012). arXiv:1109.5119 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    A. Arbey, M. Battaglia, F. Mahmoudi, Eur. Phys. J. C 72, 1847 (2012). arXiv:1110.3726 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    B.C. Allanach, A.J. Barr, A. Dafinca, C. Gwenlan, J. High Energy Phys. 1107, 104 (2011). arXiv:1105.1024 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    S.S. AbdusSalam, Phys. Lett. B 705, 331 (2011). arXiv:1106.2317 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    S.S. AbdusSalam, B.C. Allanach, H.K. Dreiner, J. Ellis, U. Ellwanger, J. Gunion, S. Heinemeyer, M. Kraemer et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    M. Carena, J. Lykken, S. Sekmen, N.R. Shah, C.E.M. Wagner, arXiv:1205.5903 [hep-ph]
  28. 28.
    A. Strubig, S. Caron, M. Rammensee, arXiv:1202.6244 [hep-ph]
  29. 29.
    G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512 [hep-ex]
  30. 30.
    ATLAS Note, Prospects for supersymmetry discovery based on inclusive searches at a 7 TeV centre-of-mass energy with the ATLAS detector. Tech. Rep. ATL-PHYS-PUB-2010-010, CERN, Geneva (2010) Google Scholar
  31. 31.
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo, arXiv:1206.5800 [hep-ph]
  32. 32.
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail, T.G. Rizzo, Phys. Rev. D, arXiv:1206.5800
  33. 33.
    For a review, see G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036
  34. 34.
    K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). hep-ph/0104145 ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635 (2007). hep-ph/0609292 ADSGoogle Scholar
  37. 37.
    E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO] ADSCrossRefGoogle Scholar
  38. 38.
    G.B. Gelmini, arXiv:1106.6278 [hep-ph]
  39. 39.
    A. Brignole, F. Feruglio, M.L. Mangano, F. Zwirner, Nucl. Phys. B 526, 136 (1998). Erratum-ibid. B 582, 759 (2000). hep-ph/9801329 ADSCrossRefGoogle Scholar
  40. 40.
    J.L. Feng, S. Su, F. Takayama, Phys. Rev. D 70, 075019 (2004). hep-ph/0404231 ADSCrossRefGoogle Scholar
  41. 41.
    Y. Santoso, in Karlsruhe 2007, SUSY 2007, pp. 930–933. arXiv:0709.3952 [hep-ph]
  42. 42.
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    K. Hagiwara, K. Mawatari, Y. Takaesu, Eur. Phys. J. C 71, 1529 (2011). arXiv:1010.4255 [hep-ph] ADSGoogle Scholar
  44. 44.
    A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin et al., hep-ph/9908288
  45. 45.
    A. Pukhov, hep-ph/0412191
  46. 46.
    K. Jedamzik, Phys. Rev. D 74, 103509 (2006). hep-ph/0604251 ADSCrossRefGoogle Scholar
  47. 47.
    M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 71, 083502 (2005). astro-ph/0408426 ADSCrossRefGoogle Scholar
  48. 48.
    T. Moroi, H. Murayama, M. Yamaguchi, Phys. Lett. B 303, 289 (1993) ADSCrossRefGoogle Scholar
  49. 49.
    M. Fujii, T. Yanagida, Phys. Lett. B 549, 273 (2002). hep-ph/0208191 ADSCrossRefGoogle Scholar
  50. 50.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007). arXiv:hep-ph/0607059 ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:1005.4133 [hep-ph]
  52. 52.
    C.B. Dover, T.K. Gaisser, G. Steigman, Phys. Rev. Lett. 42, 1117 (1979) ADSCrossRefGoogle Scholar
  53. 53.
    E. Nardi, E. Roulet, Phys. Lett. B 245, 105 (1990) ADSCrossRefGoogle Scholar
  54. 54.
    J. Kang, M.A. Luty, S. Nasri, J. High Energy Phys. 0809, 086 (2008). hep-ph/0611322 ADSCrossRefGoogle Scholar
  55. 55.
    C. Jacoby, S. Nussinov, arXiv:0712.2681 [hep-ph]
  56. 56.
    M. Kusakabe, T. Takesako, Phys. Rev. D 85, 015005 (2012). arXiv:1112.0860 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    For some early work, see V.M. Chechetkin, M.Y. Khlopov, M.G. Sapozhnikov, Riv. Nuovo Cimento 5, N-10 (1982) Google Scholar
  58. 58.
    I.V. Falomkin, G.B. Pontecorvo, M.G. Sapozhnikov, M.Y. Khlopov, F. Balestra, G. Piragino, Nuovo Cimento A 79, 193 (1984). [Yad. Fiz. 39, 990 (1984)] ADSCrossRefGoogle Scholar
  59. 59.
    M.Y. Khlopov, A.D. Linde, Phys. Lett. B 138, 265 (1984) ADSCrossRefGoogle Scholar
  60. 60.
    F. Balestra, Y.A. Batusov, G. Bendiscioli, M.P. Bussa, L. Busso, I.V. Falomkin, L. Ferrero, V. Filippini et al., Lett. Nuovo Cimento 41, 223 (1984) ADSCrossRefGoogle Scholar
  61. 61.
    D. Lindley, Astrophys. J. 294, 1 (1985) ADSCrossRefGoogle Scholar
  62. 62.
    J.R. Ellis, D.V. Nanopoulos, S. Sarkar, Nucl. Phys. B 259, 175 (1985) ADSCrossRefGoogle Scholar
  63. 63.
    R. Juszkiewicz, J. Silk, A. Stebbins, Phys. Lett. B 158, 463 (1985) ADSCrossRefGoogle Scholar
  64. 64.
    J. Audouze, D. Lindley, J. Silk, Astrophys. J. 293, L53 (1985) ADSCrossRefGoogle Scholar
  65. 65.
    D. Lindley, Phys. Lett. B 171, 235 (1986) ADSCrossRefGoogle Scholar
  66. 66.
    M. Kawasaki, K. Sato, Phys. Lett. B 189, 23 (1987) ADSCrossRefGoogle Scholar
  67. 67.
    M.Y. Khlopov, V.M. Chechetkin, Fiz. èlem. častic At. âdra 18, 627 (1987) Google Scholar
  68. 68.
    R.J. Scherrer, M.S. Turner, Astrophys. J. 331, 19 (1988). Astrophys. J. 331, 33 (1988) ADSCrossRefGoogle Scholar
  69. 69.
    Y.L. Levitan, I.M. Sobol, M.Y. Khlopov, V.M. Chechetkin, Sov. J. Nucl. Phys. 47, 109 (1988). [Yad. Fiz. 47, 168 (1988)] Google Scholar
  70. 70.
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall, G.D. Starkman, Astrophys. J. 330, 545 (1988) ADSCrossRefGoogle Scholar
  71. 71.
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall, G.D. Starkman, Nucl. Phys. B 311, 699 (1989) ADSCrossRefGoogle Scholar
  72. 72.
    M.H. Reno, D. Seckel, Phys. Rev. D 37, 3441 (1988) ADSCrossRefGoogle Scholar
  73. 73.
    J.R. Ellis, G.B. Gelmini, J.L. Lopez, D.V. Nanopoulos, S. Sarkar, Nucl. Phys. B 373, 399 (1992) ADSCrossRefGoogle Scholar
  74. 74.
    M. Kawasaki, T. Moroi, Prog. Theor. Phys. 93, 879 (1995). hep-ph/9403364, hep-ph/9403061 ADSCrossRefGoogle Scholar
  75. 75.
    R.J. Protheroe, T. Stanev, V.S. Berezinsky, Phys. Rev. D 51, 4134 (1995). astro-ph/9409004 ADSCrossRefGoogle Scholar
  76. 76.
    M.Y. Khlopov, Y.L. Levitan, E.V. Sedelnikov, I.M. Sobol, Phys. At. Nucl. 57, 1393 (1994). [Yad. Fiz. 57, 1466 (1994)] Google Scholar
  77. 77.
    E.V. Sedelnikov, S.S. Filippov, M.Y. Khlopov, Phys. At. Nucl. 58, 235 (1995). [Yad. Fiz. 58, 280 (1995)] Google Scholar
  78. 78.
    E. Holtmann, M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 60, 023506 (1999). hep-ph/9805405 ADSCrossRefGoogle Scholar
  79. 79.
    K. Jedamzik, Phys. Rev. D 70, 083510 (2004). astro-ph/0405583 ADSCrossRefGoogle Scholar
  80. 80.
    K. Jedamzik, Phys. Rev. D 70, 063524 (2004). astro-ph/0402344 ADSCrossRefGoogle Scholar
  81. 81.
    K. Jedamzik, K.-Y. Choi, L. Roszkowski, R. Ruiz de Austri, J. Cosmol. Astropart. Phys. 0607, 007 (2006). hep-ph/0512044 ADSCrossRefGoogle Scholar
  82. 82.
    M. Kusakabe, T. Kajino, G.J. Mathews, Phys. Rev. D 74, 023526 (2006). astro-ph/0605255 ADSCrossRefGoogle Scholar
  83. 83.
    M. Kusakabe, T. Kajino, R.N. Boyd, T. Yoshida, G.J. Mathews, Phys. Rev. D 76, 121302 (2007). arXiv:0711.3854 [astro-ph] ADSCrossRefGoogle Scholar
  84. 84.
    C. Bird, K. Koopmans, M. Pospelov, Phys. Rev. D 78, 083010 (2008). hep-ph/0703096 ADSCrossRefGoogle Scholar
  85. 85.
    T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, M. Yamanaka, Phys. Rev. D 76, 125023 (2007). arXiv:0704.2914 [hep-ph] ADSCrossRefGoogle Scholar
  86. 86.
    K. Jedamzik, Phys. Rev. D 77, 063524 (2008). arXiv:0707.2070 [astro-ph] ADSCrossRefGoogle Scholar
  87. 87.
    M. Pospelov, J. Pradler, F.D. Steffen, J. Cosmol. Astropart. Phys. 0811, 020 (2008). arXiv:0807.4287 [hep-ph] ADSCrossRefGoogle Scholar
  88. 88.
    K. Kohri, Y. Santoso, Phys. Rev. D 79, 043514 (2009). arXiv:0811.1119 [hep-ph] ADSCrossRefGoogle Scholar
  89. 89.
    M. Pospelov, J. Pradler, Phys. Rev. D 82, 103514 (2010). arXiv:1006.4172 [hep-ph] ADSCrossRefGoogle Scholar
  90. 90.
    R.H. Cyburt, J. Ellis, B.D. Fields, F. Luo, K.A. Olive, V.C. Spanos, J. Cosmol. Astropart. Phys. 1010, 032 (2010). arXiv:1007.4173 [astro-ph.CO] ADSCrossRefGoogle Scholar
  91. 91.
    T. Jittoh, K. Kohri, M. Koike, J. Sato, K. Sugai, M. Yamanaka, K. Yazaki, Phys. Rev. D 84, 035008 (2011). arXiv:1105.1431 [hep-ph] ADSCrossRefGoogle Scholar
  92. 92.
    D.A. Vasquez, A. Belikov, A. Coc, J. Silk, E. Vangioni, arXiv:1208.0443 [astro-ph.CO]
  93. 93.
    D. Cumberbatch, K. Ichikawa, M. Kawasaki, K. Kohri, J. Silk, G.D. Starkman, Phys. Rev. D 76, 123005 (2007). arXiv:0708.0095 [astro-ph] ADSCrossRefGoogle Scholar
  94. 94.
    S. Bailly, K. Jedamzik, G. Moultaka, Phys. Rev. D 80, 063509 (2009). arXiv:0812.0788 [hep-ph] ADSCrossRefGoogle Scholar
  95. 95.
    K. Kohri, T. Takahashi, Phys. Lett. B 682, 337 (2010). arXiv:0909.4610 [hep-ph] ADSCrossRefGoogle Scholar
  96. 96.
    M. Kaplinghat, A. Rajaraman, Phys. Rev. D 74, 103004 (2006). astro-ph/0606209 ADSCrossRefGoogle Scholar
  97. 97.
    K. Kohri, F. Takayama, AIP Conf. Proc. 903, 587 (2007). hep-ph/0611016 ADSCrossRefGoogle Scholar
  98. 98.
    K. Jedamzik, J. Cosmol. Astropart. Phys. 0803, 008 (2008). arXiv:0710.5153 [hep-ph] ADSCrossRefGoogle Scholar
  99. 99.
    M. Kusakabe, T. Kajino, T. Yoshida, G.J. Mathews, Phys. Rev. D 80, 103501 (2009). arXiv:0906.3516 [hep-ph] ADSCrossRefGoogle Scholar
  100. 100.
    T. Kanzaki, M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 76, 105017 (2007). arXiv:0705.1200 [hep-ph] ADSCrossRefGoogle Scholar
  101. 101.
    G.D. Kribs, I.Z. Rothstein, Phys. Rev. D 55, 4435 (1997). [Erratum-ibid. 56, 1822 (1997). hep-ph/9610468] ADSCrossRefGoogle Scholar
  102. 102.
    X.-L. Chen, M. Kamionkowski, Phys. Rev. D 70, 043502 (2004). astro-ph/0310473 ADSCrossRefGoogle Scholar
  103. 103.
    M.V. Sazhin, O.S. Sazhina, U. Chadayammuri, arXiv:1109.2258 [astro-ph.CO]
  104. 104.
    A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, M. Viel, J. Cosmol. Astropart. Phys. 0905, 012 (2009). arXiv:0812.0010 [astro-ph] ADSCrossRefGoogle Scholar
  105. 105.
    K. Sigurdson, M. Kamionkowski, Phys. Rev. Lett. 92, 171302 (2004). astro-ph/0311486 ADSCrossRefGoogle Scholar
  106. 106.
    G. Aad, et al. (The ATLAS Collaboration), doi: 10.1016/j.physletb.2012.06.013
  107. 107.
    See talk given by U. Langenegger (CMS), CERN seminar, 28 Feb. 2012 Google Scholar
  108. 108.
    R. Aaij, et al. (LHCb Collaboration), arXiv:1203.4493 [hep-ex]
  109. 109.
    T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). hep-ph/0603175 ADSCrossRefGoogle Scholar
  110. 110.
    J. Conway, PGS4, Pretty Good Detector Simulation. http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs.html
  111. 111.
    G. Aad, et al. (ATLAS Collaboration), arXiv:1109.6572 [hep-ex]
  112. 112.
    G. Aad et al. (Atlas Collaboration), J. High Energy Phys. 1111, 099 (2011). arXiv:1110.2299 [hep-ex] ADSCrossRefGoogle Scholar
  113. 113.
    G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 012006 (2012). arXiv:1109.6606 [hep-ex] ADSCrossRefGoogle Scholar
  114. 114.
    G. Aad, et al. (ATLAS Collaboration), arXiv:1110.6189 [hep-ex]
  115. 115.
    ATLAS Collaboration, ATLAS-CONF-2012-033 Google Scholar
  116. 116.
    ATLAS Collaboration, ATLAS-CONF-2012-037 Google Scholar
  117. 117.
    ATLAS Collaboration, ATLAS-CONF-2012-041 Google Scholar
  118. 118.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51 (1997). arXiv:hep-ph/9610490 ADSGoogle Scholar
  119. 119.
    W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B 515, 3 (1998). arXiv:hep-ph/9710451 ADSCrossRefGoogle Scholar
  120. 120.
  121. 121.
    T. Plehn, Czechoslov. J. Phys. 55, B213 (2005). arXiv:hep-ph/0410063 Google Scholar
  122. 122.
    CMS Collaboration, CMS PAS SUS-11-006 Google Scholar
  123. 123.
    G. Aad, et al. (ATLAS Collaboration), arXiv:1112.3832 [hep-ex]
  124. 124.
    CMS Collaboration, CMS PAS SUS-11-020 Google Scholar
  125. 125.
    G. Aad, et al. (ATLAS Collaboration), arXiv:1203.6193 [hep-ex]
  126. 126.
    A.L. Read, J. Phys. G 28, 2693 (2002) MathSciNetADSCrossRefGoogle Scholar
  127. 127.
    T. Gleisberg, S. Höche, F. Krauss, A. Schalicke, S. Schumann, J.-C. Winter, J. High Energy Phys. 0402, 056 (2004). hep-ph/0311263 ADSCrossRefGoogle Scholar
  128. 128.
    T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Winter, J. High Energy Phys. 0902, 007 (2009) ADSCrossRefGoogle Scholar
  129. 129.
    S. Höche, F. Krauss, S. Schumann, F. Siegert, J. High Energy Phys. 0905, 053 (2009) CrossRefGoogle Scholar
  130. 130.
    S. Höche, S. Schumann, F. Siegert, Phys. Rev. D 81, 034026 (2010) ADSCrossRefGoogle Scholar
  131. 131.
    See talk given by M. Patel, LHCb Collaboration, PLHC2012, Vancouver, BC, June 4–9, 2012 Google Scholar
  132. 132.
    S. Chatrchyan, et al. (CMS Collaboration), arXiv:1202.4083 [hep-ex]
  133. 133.
    S. Chatrchyan, et al. (CMS Collaboration), arXiv:1205.0272 [hep-ex]
  134. 134.
    See the contribution by G. Polesello and T. Rizzo in “Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report,” G. Brooijmans, B. Gripaios, F. Moortgat, J. Santiago, P. Skands, D. Albornoz Vasquez, B. C. Allanach, A. Alloul et al., arXiv:1203.1488 [hep-ph]
  135. 135.
    M. Altunay et al. (Open Science Grid Collaboration), J. Grid Comput. 9, 201 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • Matthew W. Cahill-Rowley
    • 1
  • JoAnne L. Hewett
    • 1
  • Stefan Hoeche
    • 1
  • Ahmed Ismail
    • 1
    Email author
  • Thomas G. Rizzo
    • 1
  1. 1.SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations