Advertisement

The European Physical Journal C

, 72:2154 | Cite as

Top quark effects in composite vector pair production at the LHC

  • A. E. Cárcamo HernándezEmail author
Regular Article - Theoretical Physics

Abstract

In the context of strongly coupled Electroweak Symmetry Breaking, composite light scalar singlet and composite triplet of heavy vectors may arise from an unspecified strong dynamics and the interactions among themselves and with the Standard Model gauge bosons and fermions can be described by a SU(2) L ×SU(2) R /SU(2) L+R effective chiral Lagrangian. In this framework, the production of the V + V and V 0 V 0 final states at the LHC by gluon fusion mechanism is studied in the region of parameter space consistent with the unitarity constraints in the elastic channel of longitudinal gauge boson scattering and in the inelastic scattering of two longitudinal Standard Model gauge bosons into Standard Model fermions pairs. The expected rates of same-sign di-lepton and tri-lepton events from the decay of the V 0 V 0 final state are computed and their corresponding backgrounds are estimated. It is of remarkable relevance that the V 0 V 0 final state can only be produced at the LHC via a gluon fusion mechanism since this state is absent in the Drell–Yan process. It is also found that the V + V final-state production cross section via gluon fusion mechanism is comparable with the V + V Drell–Yan production cross section. The comparison of the V 0 V 0 and V + V total cross sections will be crucial for distinguishing the different models since the vector pair production is sensitive to many couplings. This will also be useful to determine if the heavy vectors are only composite vectors or are gauge vectors of a spontaneously broken gauge symmetry.

Keywords

Large Hadron Collider Gauge Boson Total Cross Section Gluon Fusion Strong Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is greatly indebted to Professors Riccardo Barbieri, Gino Isidori, Alfonso Zerwekh and Claudio Dib for many useful suggestions and for careful reading of the manuscript. The author also thanks his wife for drawing the Feynman diagrams.

References

  1. 1.
    T. Appelquist, R. Shrock, Phys. Rev. Lett. 90, 201801 (2003). arXiv:hep-ph/0301108 ADSCrossRefGoogle Scholar
  2. 2.
    J. Hirn, A. Martin, V. Sanz, J. High Energy Phys. 0805, 084 (2008). arXiv:0712.3783 [hep-ph] ADSCrossRefGoogle Scholar
  3. 3.
    J. Hirn, A. Martin, V. Sanz, Phys. Rev. D 78, 075026 (2008). arXiv:0807.2465 [hep-ph] ADSCrossRefGoogle Scholar
  4. 4.
    A. Belyaev, R. Foadi, M.T. Frandsen, M. Jarvinen, F. Sannino, A. Pukhov, Phys. Rev. D 79, 035006 (2009). arXiv:0809.0793 [hep-ph] ADSCrossRefGoogle Scholar
  5. 5.
    C. Quigg, R. Shrock, Phys. Rev. D 79, 096002 (2009). arXiv:0901.3958 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    C. Hill, E. Simmons, Phys. Rep. 381, 235 (2003). arXiv:hep-ph/0203079 ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Andersen et al., Eur. Phys. J. Plus 126, 81 (2011). arXiv:1104.1255 [hep-ph] CrossRefGoogle Scholar
  8. 8.
    D.B. Kaplan, H. Georgi, Phys. Lett. B 136, 183 (1984) ADSCrossRefGoogle Scholar
  9. 9.
    M.A. Luty, Phys. Rev. D 41, 2893 (1990) ADSCrossRefGoogle Scholar
  10. 10.
    R.S. Chivukula, V. Koulovassilopoulos, Phys. Lett. B 309, 371 (1993). arXiv:hep-ph/9304293 ADSCrossRefGoogle Scholar
  11. 11.
    R. Contino, arXiv:0908.3578 [hep-ph]
  12. 12.
    R. Contino, arXiv:1005.4269v1 [hep-ph]
  13. 13.
    C. Grojean, arXiv:0910.4976v1 [hep-ph]
  14. 14.
    G.F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, J. High Energy Phys. 0706, 045 (2007). arXiv:hep-ph/0703164 ADSCrossRefGoogle Scholar
  15. 15.
    G. Burdman, L.D. Rold, J. High Energy Phys. 0712, 086 (2007). arXiv:0710.0623 [hep-ph] ADSCrossRefGoogle Scholar
  16. 16.
    I. Low, R. Rattazzi, A. Vichi, arXiv:0907.5413 [hep-ph]
  17. 17.
    A.R. Zerwekh, Mod. Phys. Lett. A 25, 423 (2010). arXiv:0907.4690 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    G. Burdman, C.E.F. Haluch, arXiv:1109.3914v1 [hep-ph]
  19. 19.
    A.E. Cárcamo Hernández, C.O. Dib, H.N. Neill, A.R. Zerwekh, J. High Energy Phys. 1202, 132 (2012). arXiv:1201.0878 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    J. Bagger et al., Phys. Rev. D 49, 1246 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Peláez, Phys. Rev. D 55, 4193 (1997). arXiv:hep-ph/9609427 ADSCrossRefGoogle Scholar
  22. 22.
    R.S. Chivukula, D.A. Dicus, H.J. He, Phys. Lett. B 525, 175 (2002). arXiv:hep-ph/0111016 MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    C. Csaki, C. Grojean, H. Murayama, L. Pilo, J. Terning, Phys. Rev. D 69, 055006 (2004). arXiv:hep-ph/0305237 ADSCrossRefGoogle Scholar
  24. 24.
    R. Barbieri, G. Isidori, V.S. Rychkov, E. Trincherini, Phys. Rev. D 78, 036012 (2008). arXiv:0806.1624 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    O. Cata, G. Isidori, J.F. Kamenik, Nucl. Phys. B 822, 230 (2009). arXiv:0905.0490 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    R. Barbieri, A.E. Cárcamo Hernández, G. Corcella, R. Torre, E. Trincherini, J. High Energy Phys. 03, 068 (2010). arXiv:0911.1942 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    C. Grojean, E. Salvioni, R. Torre, J. High Energy Phys. 07, 002 (2011). arXiv:1201.0878 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 155, 95 (1985) ADSCrossRefGoogle Scholar
  29. 29.
    R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Nucl. Phys. B 282, 235 (1987) ADSCrossRefGoogle Scholar
  30. 30.
    A.R. Zerwekh, Eur. Phys. J. C 46, 791 (2006). arXiv:hep-ph/0512261 ADSCrossRefGoogle Scholar
  31. 31.
    A.E. Cárcamo Hernández, R. Torre, Nucl. Phys. B 841, 188 (2010). arXiv:1005.3809 [hep-ph] CrossRefGoogle Scholar
  32. 32.
    A.E. Cárcamo Hernández, PhD thesis, arXiv:1108.0115 [hep-ph]
  33. 33.
    R. Torre, PhD thesis, arXiv:1110.3906 [hep-ph]
  34. 34.
    D.B. Kaplan, Nucl. Phys. B 365, 259 (1991) ADSCrossRefGoogle Scholar
  35. 35.
    R. Barbieri, G. Isidori, D. Pappadopulo, J. High Energy Phys. 02, 029 (2009). arXiv:0811.2888 [hep-ph] ADSCrossRefGoogle Scholar
  36. 36.
    R.S. Chivukula, D.A. Dicus, H.J. He, S. Nandi, Phys. Lett. B 562, 109 (2003). arXiv:hep-ph/0302263 ADSCrossRefGoogle Scholar
  37. 37.
    R. Barbieri, A. Pomarol, R. Rattazzi, Phys. Lett. B 591, 141 (2004). arXiv:hep-ph/0310285 ADSCrossRefGoogle Scholar
  38. 38.
    Y. Nomura, J. High Energy Phys. 0311, 050 (2003). arXiv:hep-ph/0309189 ADSCrossRefGoogle Scholar
  39. 39.
    R. Foadi, S. Gopalakrishna, C. Schmidt, J. High Energy Phys. 0403, 042 (2004). arXiv:hep-ph/0312324 ADSCrossRefGoogle Scholar
  40. 40.
    H. Georgi, Phys. Rev. D 71, 015016 (2005). arXiv:hep-ph/0408067 ADSCrossRefGoogle Scholar
  41. 41.
    R.S. Chivukula, H.J. He, M. Kurachi, E.H. Simmons, M. Tanabashi, Phys. Rev. D 78, 095003 (2008). arXiv:0808.1682 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    R. Foadi, M. Järvinen, F. Sannino, Phys. Rev. D 79, 035010 (2008). arXiv:0811.3719 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    R. Foadi, M. Jarvinen, F. Sannino, Phys. Rev. D 79, 035010 (2008). arXiv:0811.3719 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    H.J. He et al., Phys. Rev. D 78, 031701 (2008). arXiv:0708.2588 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    E. Accomando, S. De Curtis, D. Dominici, L. Fedeli, Phys. Rev. D 79, 055020 (2009). arXiv:0807.5051 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    E. Accomando, S. De Curtis, D. Dominici, L. Fedeli, Nuovo Cimento 123B, 809 (2008). arXiv:0807.2951 [hep-ph] ADSGoogle Scholar
  47. 47.
    A. Birkedal, K.T. Matchev, M. Perelstein, in The Proceedings of 2005 International Linear Collider Workshop (LCWS 2005), Stanford, California, 18–22 March 2005, (2005), p. 0314. arXiv:hep-ph/0508185 Google Scholar
  48. 48.
    T. Han, D.L. Rainwater, G. Valencia, Phys. Rev. D 68, 015003 (2003). arXiv:hep-ph/0301039 ADSCrossRefGoogle Scholar
  49. 49.
    R. Contino, C. Grojean, M. Moretti, F. Piccinini, R. Rattazzi, J. High Energy Phys. 1005, 089 (2010). arXiv:1002.1011 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    M. Grazzini, J. High Energy Phys. 0601, 095 (2006). arXiv:hep-ph/0510337 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Universidad Técnica Federico Santa María and Centro Científico-Tecnológico de ValparaísoValparaísoChile

Personalised recommendations