Advertisement

The European Physical Journal C

, 72:2153 | Cite as

Degenerate noncommutativity

  • Harald Grosse
  • Michael WohlgenanntEmail author
Regular Article - Theoretical Physics

Abstract

We study a renormalizable four dimensional model with two deformed quantized space directions. A one-loop renormalization is performed explicitly. The Euclidean model is connected to the Minkowski version via an analytic continuation. At a special value of the parameters a nontrivial fixed point of the renormalization group occurs.

Keywords

Analytic Continuation Feynman Rule Wave Function Renormalization Divergent Contribution Nontrivial Fixed Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Grosse, R. Wulkenhaar, Renormalisation of ϕ 4 theory on noncommutative ℝ2 in the matrix base. J. High Energy Phys. 12, 019 (2003). hep-th/0307017 MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    H. Grosse, R. Wulkenhaar, Renormalisation of ϕ 4 theory on noncommutative ℝ4 in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). hep-th/0401128 MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model. Ann. Henri Poincaré 8, 427–474 (2007). math-ph/0606069 MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa, A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys. 287, 275–290 (2009). arXiv:0802.0791 [math-ph] MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    H. Grosse, F. Vignes-Tourneret, Quantum field theory on the degenerate Moyal space. J. Noncommut. Geom. 4, 4 (2010). arXiv:0803.1035 [math-ph] MathSciNetGoogle Scholar
  6. 6.
    A. Fischer, R.J. Szabo, Duality covariant quantum field theory on noncommutative Minkowski space. J. High Energy Phys. 02, 031 (2009). arXiv:0810.1195 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Zahn, Divergences in quantum field theory on the noncommutative two-dimensional Minkowski space with Grosse-Wulkenhaar potential. arXiv:1005.0541 [hep-th]
  8. 8.
    D. Bahns, The ultraviolet infrared mixing problem on the noncommutative Moyal space. arXiv:1012.3707 [hep-th]
  9. 9.
    A. Fischer, R.J. Szabo, Propagators and matrix basis on noncommutative Minkowski space. Phys. Rev. D 84, 125010 (2011). arXiv:1106.6166 [hep-th] ADSCrossRefGoogle Scholar
  10. 10.
    H. Grosse, G. Lechner, T. Ludwig, R. Verch, Wick rotation for quantum field theories on degenerate Moyal space(-time). arXiv:1111.6856 [hep-th]
  11. 11.
    J.M. Gracia-Bondia, J.C. Varilly, Algebras of distributions suitable for phase space quantum mechanics. 1. J. Math. Phys. 29, 869–879 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    V. Rivasseau, Non-commutative renormalization. arXiv:0705.0705 [hep-th]
  13. 13.
    H. Grosse, R. Wulkenhaar, The β-function in duality-covariant noncommutative ϕ 4 theory. Eur. Phys. J. C 35, 277–282 (2004). hep-th/0402093 MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    D. Bahns, Schwinger functions in noncommutative quantum field theory. Ann. Henri Poincaré 11, 1273–1283 (2010). arXiv:0908.4537 [math-ph] MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Austro–Ukrainian Institute for Science and Technology, c/o TU ViennaViennaAustria

Personalised recommendations