Advertisement

The European Physical Journal C

, 72:2150 | Cite as

Microcausality and quantization of the fermionic Myers–Pospelov model

  • Justo Lopez-Sarrion
  • Carlos M. Reyes
Regular Article - Theoretical Physics

Abstract

We study the fermionic sector of the Myers and Pospelov theory with a general background n. The spacelike case without temporal component is well defined and no new ingredients came about, apart from the explicit Lorentz invariance violation. The lightlike case is ill defined and physically discarded. However, the other case where a nonvanishing temporal component of the background is present, the theory is physically consistent. We show that new modes appear as a consequence of higher time derivatives. We quantize the timelike theory and calculate the microcausality violation which turns out to occur near the light cone.

Keywords

Dispersion Relation Fermionic Sector Retarded Green Function Modify Dispersion Relation Lorentz Invariance Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

J.L. acknowledges support from DICYT Grant No. 041131LS (USACH) and FONDECYT-Chile Grant No. 1100777. C.M.R. acknowledges partial support from DICYT (USACH) and Dirección de Investigación de la Universidad del Bío-Bío (DIUBB) Grant No. 123809 3/R.

References

  1. 1.
    D. Colladay, V.A. Kostelecky, Phys. Rev. D 55, 6760 (1997) ADSGoogle Scholar
  2. 2.
    D. Colladay, V.A. Kostelecky, Phys. Rev. D 58, 116002 (1998) ADSGoogle Scholar
  3. 3.
    V.A. Kostelecky, M. Mewes, Phys. Rev. D 80, 015020 (2009) ADSGoogle Scholar
  4. 4.
    A. Kostelecky, M. Mewes, Phys. Rev. D 85, 096005 (2012) ADSGoogle Scholar
  5. 5.
    V.A. Kostelecky, N. Russell, Rev. Mod. Phys. 83, 11 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    J.-P. Bocquet, D. Moricciani, V. Bellini, M. Beretta, L. Casano, A. D’Angelo, R. Di Salvo, A. Fantini et al., Phys. Rev. Lett. 104, 241601 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    P.A. Bolokhov, M. Pospelov, Phys. Rev. D 77, 025022 (2008) ADSGoogle Scholar
  9. 9.
    R. Montemayor, L.F. Urrutia, Phys. Rev. D 72, 045018 (2005) ADSGoogle Scholar
  10. 10.
    R. Montemayor, L.F. Urrutia, Phys. Lett. B 606, 86 (2005) ADSGoogle Scholar
  11. 11.
    L. Maccione, S. Liberati, A. Celotti, J.G. Kirk, J. Cosmol. Astropart. Phys. 0710, 013 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    L. Maccione, S. Liberati, J. Cosmol. Astropart. Phys. 0808, 027 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    C.A.G. Almeida, M.A. Anacleto, F.A. Brito, E. Passos, Eur. Phys. J. C 72, 1855 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    J. Ellis, N. Harries, A. Meregaglia, A. Rubbia, A.S. Sakharov, Phys. Rev. D 78, 033013 (2008) ADSGoogle Scholar
  15. 15.
    E. Di Grezia, S. Esposito, G. Salesi, Mod. Phys. Lett. A 21, 349–362 (2006) ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    C.M. Reyes, L.F. Urrutia, J.D. Vergara, Phys. Rev. D 78, 125011 (2008) ADSGoogle Scholar
  17. 17.
    C.M. Reyes, L.F. Urrutia, J.D. Vergara, Phys. Lett. B 675, 336–339 (2009) ADSGoogle Scholar
  18. 18.
    T. Mariz, Phys. Rev. D 83, 045018 (2011) ADSGoogle Scholar
  19. 19.
    T. Mariz, J.R. Nascimento, A.Y. Petrov, Phys. Rev. D 85, 125003 (2012) ADSGoogle Scholar
  20. 20.
    G. Gubitosi, G. Genovese, G. Amelino-Camelia, A. Melchiorri, Phys. Rev. D 82, 024013 (2010) ADSGoogle Scholar
  21. 21.
    C.M. Reyes, Phys. Rev. D 82, 125036 (2010) ADSGoogle Scholar
  22. 22.
    B. Altschul, Phys. Rev. D 83, 056012 (2011) ADSGoogle Scholar
  23. 23.
    J. Gamboa, J. Lopez-Sarrion, A.P. Polychronakos, Phys. Lett. B 634, 471–473 (2006) ADSGoogle Scholar
  24. 24.
    O. Bertolami, J.G. Rosa, Phys. Rev. D 71, 097901 (2005) MathSciNetADSGoogle Scholar
  25. 25.
    J.R. Espinosa, B. Grinstein, D. O’Connell, M.B. Wise, Phys. Rev. D 77, 085002 (2008) ADSGoogle Scholar
  26. 26.
    B. Grinstein, D. O’Connell, M.B. Wise, Phys. Rev. D 77, 025012 (2008) ADSGoogle Scholar
  27. 27.
    B. Fornal, B. Grinstein, M.B. Wise, Phys. Lett. B 674, 330 (2009) ADSGoogle Scholar
  28. 28.
    M. Ostrogradski, Mem. Acad. St.-Pétersbourg VI, 385 (1850) Google Scholar
  29. 29.
    A. Pais, G.E. Uhlenbeck, Phys. Rev. 79, 145 (1950) MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    T.D. Lee, G.C. Wick, Nucl. Phys. B 9, 209 (1969) MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    T.D. Lee, G.C. Wick, Phys. Rev. D 2, 1033–1048 (1970) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    R.E. Cutkosky, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, Nucl. Phys. B 12, 281–300 (1969) ADSCrossRefGoogle Scholar
  33. 33.
    I. Antoniadis, E. Dudas, D.M. Ghilencea, Nucl. Phys. B 767, 29 (2007) ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    D. Anselmi, Eur. Phys. J. C 65, 523 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    C. Adam, F.R. Klinkhamer, Phys. Lett. B 513, 245–250 (2001) ADSzbMATHGoogle Scholar
  36. 36.
    C. Adam, F.R. Klinkhamer, Nucl. Phys. B 607, 247–267 (2001) ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    V.A. Kostelecky, R. Lehnert, Phys. Rev. D 63, 065008 (2001) MathSciNetADSGoogle Scholar
  38. 38.
    R.P. Woodard, Lect. Notes Phys. 720, 403 (2007) ADSCrossRefGoogle Scholar
  39. 39.
    S.W. Hawking, T. Hertog, Phys. Rev. D 65, 103515 (2002) MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Departamento de Ciencias BásicasUniversidad del Bío-BíoChillánChile

Personalised recommendations