Advertisement

The European Physical Journal C

, 72:2149 | Cite as

Dark energy, matter creation and curvature

  • Víctor H. CárdenasEmail author
Regular Article - Theoretical Physics

Abstract

The most studied way to explain the current accelerated expansion of the universe is to assume the existence of dark energy; a new component that fills the universe, does not form clumps, currently dominates the evolution, and has a negative pressure. In this work I study an alternative model proposed by Lima et al. (Abramo and Lima in Class. Quantum Gravity 13:2953, 1996; Zimdahl in Phys. Rev. D 53:5483, 1996; Zimdahl and Pavón in Mon. Not. R. Astron. Soc. 266:872, 1994), which does not need an exotic equation of state, but assumes instead the existence of gravitational particle creation. Because this model fits the supernova observations as well as the ΛCDM model, I perform in this work a thorough study of this model, considering an explicit spatial curvature. I found that in this scenario we can alleviate the cosmic coincidence problem, basically showing that these two components, dark matter and dark energy, are of the same nature, but they act at different scales. I also shown the inadequacy of some particle creation models, and I study a previously proposed new model that overcomes these difficulties.

Keywords

Dark Matter Dark Energy Cosmological Model Particle Creation Matter Creation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author want to thank S. del Campo and R. Herrera for useful discussions, and acknowledges financial support through DIUV project No. 13/2009, and FONDECYT 1110230.

References

  1. 1.
    A. Riess et al., Astrophys. J. 607, 665 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    J.L. Tonry et al., Astrophys. J. 594, 1 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Frieman, M.S. Turner, D. Huterer, arXiv:0803.0982 [astro-ph]
  6. 6.
    M. Taoso, G. Bertone, A. Masiero, arXiv:0711.4996 [astro-ph]
  7. 7.
    D. Hooper, E.A. Baltz, Annu. Rev. Nucl. Part. Sci. 58 (2008). arXiv:0802.0702 [hep-ph]
  8. 8.
    S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70, 043528 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    S. Capozziello, V.F. Cardone, A. Troisi, Dark energy and dark matter as curvature effects. J. Cosmol. Astropart. Phys. 0608, 001 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Proc. Natl. Acad. Sci. USA 85, 7428 (1988) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    I. Prigogine, J. Geheniau, E. Gunzig, P. Nardone, Gen. Relativ. Gravit. 21, 767 (1989) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Ya.B. Zeldovich, JETP Lett. 12, 307 (1970) ADSGoogle Scholar
  13. 13.
    J.A. Lima, M.O. Calvao, I. Waga, Frontier Physics, Essays in Honor of Jayme Tiomno (World Scientific, Singapore, 1991). arXiv:0708.3397 [astro-ph] Google Scholar
  14. 14.
    L.R.W. Abramo, J.A.S. Lima, Class. Quantum Gravity 13, 2953 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    W. Zimdahl, Phys. Rev. D 53, 5483 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    W. Zimdahl, D. Pavón, Mon. Not. R. Astron. Soc. 266, 872 (1994) ADSGoogle Scholar
  17. 17.
    W. Zimdahl, Phys. Rev. D 61, 083511 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    M.K. Mak, T. Harko, Aust. J. Phys. 52, 659 (1999) ADSzbMATHGoogle Scholar
  19. 19.
    W. Zimdahl, D.J. Schwarz, A.B. Balakin, D. Pavon, Phys. Rev. D 64, 063501 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    L. Amendola, S. Tsujikawa, M. Sami, Phys. Lett. B 632, 155 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    L. Amendola, C. Quercellini, Phys. Rev. D 68, 023514 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    L.P. Chimento, A.S. Jakubi, D. Pavon, W. Zimdahl, Phys. Rev. D 67, 083513 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    W. Zimdahl, D. Pavon, Phys. Lett. B 521, 133 (2001) ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    L. Amendola, Phys. Rev. D 62, 043511 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    J.A.S. Lima, F.E. Silva, R.C. Santos, Class. Quantum Gravity 25, 205006 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    J.A.S. Lima, J.S. Alcaniz, Astron. Astrophys. 348, 1 (1999) ADSGoogle Scholar
  27. 27.
    J.S. Alcaniz, J.A.S. Lima, Astron. Astrophys. 349, 729 (1999) ADSGoogle Scholar
  28. 28.
    G. Steigman, R.C. Santos, J.A.S. Lima, J. Cosmol. Astropart. Phys. 0906, 033 (2009). arXiv:0812.3912 [astro-ph] ADSCrossRefGoogle Scholar
  29. 29.
    A. Shafieloo, E.V. Linder, Phys. Rev. D 84, 063519 (2011). arXiv:1107.1033 [astro-ph.CO] ADSCrossRefGoogle Scholar
  30. 30.
    P.M. Okouma, Y. Fantaye, B.A. Bassett, arXiv:1207.3000 [astro-ph.CO]
  31. 31.
    V.H. Cardenas arXiv:0812.3865 [astro-ph]
  32. 32.
    J.A.S. Lima, J.F. Jesus, F.A. Oliveira, J. Cosmol. Astropart. Phys. 1011, 027 (2010). arXiv:0911.5727 [astro-ph.CO] ADSCrossRefGoogle Scholar
  33. 33.
    S. Basilakos, J.A.S. Lima, Phys. Rev. D 82, 023504 (2010). arXiv:1003.5754 [astro-ph.CO] ADSCrossRefGoogle Scholar
  34. 34.
    H.B. Sandvik, M. Tegmark, M. Zaldarriaga, I. Waga, Phys. Rev. D 69, 123524 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    R. Bean, O. Dore, Phys. Rev. D 68, 023515 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001) ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 67, 063003 (2003) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    R. Amanullah et al., Astrophys. J. 716, 712 (2010). arXiv:1004.1711 [astro-ph.CO] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Departamento de Física y Astronomía, Facultad de CienciasUniversidad de ValparaísoValparaísoChile

Personalised recommendations