The European Physical Journal C

, 72:2147 | Cite as

Discriminating Z′ from anomalous trilinear gauge coupling signatures in e + e W + W at ILC with polarized beams

  • V. V. Andreev
  • G. Moortgat-Pick
  • P. OslandEmail author
  • A. A. Pankov
  • N. Paver
Regular Article - Theoretical Physics


New heavy neutral gauge bosons Z′ are predicted by many models of physics beyond the Standard Model. It is quite possible that Z′s are heavy enough to lie beyond the discovery reach of the CERN Large Hadron Collider LHC, in which case only indirect signatures of Z′ exchanges may emerge at future colliders, through deviations of the measured cross sections from the Standard Model predictions. We discuss in this context the foreseeable sensitivity to Z′s of W ±-pair production cross sections at the e + e International Linear Collider (ILC), especially as regards the potential of distinguishing observable effects of the Z′ from analogous ones due to competitor models with anomalous trilinear gauge couplings (AGC) that can lead to the same or similar new physics experimental signatures at the ILC. The sensitivity of the ILC for probing the ZZ′ mixing and its capability to distinguish these two new physics scenarios is substantially enhanced when the polarization of the initial beams and the produced W ± bosons are considered. A model-independent analysis of the Z′ effects in the process e + e W + W allows to differentiate the full class of vector Z′ models from those with anomalous trilinear gauge couplings, with one notable exception: the sequential SM (SSM)-like models can in this process not be distinguished from anomalous gauge couplings. Results of model-dependent analysis of a specific Z′ are expressed in terms of discovery and identification reaches on the ZZ′ mixing angle and the Z′ mass.


Pair Production Gauge Boson Standard Model Prediction Parameter Plane International Linear Collider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank S. Dittmaier for valuable comments on the importance of the radiative corrections. This research has been partially supported by the Abdus Salam ICTP under the TRIL and STEP Programmes and the Belarusian Republican Foundation for Fundamental Research. The work of AAP has been partially supported by the SFB 676 Programme of the Department of Physics, University of Hamburg. The work of PO has been supported by the Research Council of Norway.


  1. 1.
    P. Langacker, Rev. Mod. Phys. 81, 1199–1228 (2009). arXiv:0801.1345 [hep-ph] ADSCrossRefGoogle Scholar
  2. 2.
    T.G. Rizzo, hep-ph/0610104
  3. 3.
    A. Leike, S. Riemann, Z. Phys. C 75, 341 (1997). hep-ph/9607306 CrossRefGoogle Scholar
  4. 4.
    A. Leike, Phys. Rep. 317, 143–250 (1999). hep-ph/9805494 ADSCrossRefGoogle Scholar
  5. 5.
    S. Riemann, eConf C 050318, 0303 (2005). hep-ph/0508136 Google Scholar
  6. 6.
    J.L. Hewett, T.G. Rizzo, Phys. Rep. 183, 193 (1989) ADSCrossRefGoogle Scholar
  7. 7.
    J. Erler, P. Langacker, S. Munir, E. Rojas, J. High Energy Phys. 0908, 017 (2009). arXiv:0906.2435 [hep-ph] ADSCrossRefGoogle Scholar
  8. 8.
    P. Langacker, arXiv:0911.4294 [hep-ph]
  9. 9.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 714, 158–179 (2012). arXiv:1206.1849 [hep-ex] ADSCrossRefGoogle Scholar
  10. 10.
    ATLAS Collaboration, Note ATLAS-CONF-2012-007 (2012) Google Scholar
  11. 11.
    P. Osland, A.A. Pankov, A.V. Tsytrinov, N. Paver, Phys. Rev. D 79, 115021 (2009). arXiv:0904.4857 [hep-ph] ADSCrossRefGoogle Scholar
  12. 12.
    J. Brau et al. (ILC Collaboration), arXiv:0712.1950 [physics.acc-ph]
  13. 13.
    G. Aarons et al. (ILC Collaboration), arXiv:0709.1893 [hep-ph]
  14. 14.
    A.A. Pankov, N. Paver, Phys. Lett. B 272, 425–430 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Pankov, N. Paver, Phys. Rev. D 48, 63–77 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Pankov, N. Paver, Phys. Lett. B 324, 224–230 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Pankov, N. Paver, C. Verzegnassi, Int. J. Mod. Phys. A 13, 1629–1650 (1998). hep-ph/9701359 ADSCrossRefGoogle Scholar
  18. 18.
    D.-W. Jung, K.Y. Lee, H.S. Song, C. Yu, J. Korean Phys. Soc. 36, 258–264 (2000). hep-ph/9905353 Google Scholar
  19. 19.
    B. Ananthanarayan, M. Patra, P. Poulose, J. High Energy Phys. 1102, 043 (2011). arXiv:1012.3566 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    G. Gounaris, J.L. Kneur, J. Layssac, G. Moultaka, F.M. Renard, D. Schildknecht, in Proceedings of the Workshop e + e Collisions at 500 GeV: The Physics Potential, ed. by P.M. Zerwas (1992), p. 735. DESY 92-123B Google Scholar
  21. 21.
    G. Gounaris, J. Layssac, G. Moultaka, F.M. Renard, Int. J. Mod. Phys. A 8, 3285–3320 (1993) ADSCrossRefGoogle Scholar
  22. 22.
    G. Moortgat-Pick, T. Abe, G. Alexander, B. Ananthanarayan, A.A. Babich, V. Bharadwaj, D. Barber, A. Bartl et al., Phys. Rep. 460, 131–243 (2008). hep-ph/0507011 ADSCrossRefGoogle Scholar
  23. 23.
    P. Osland, A.A. Pankov, A.V. Tsytrinov, Eur. Phys. J. C 67, 191–204 (2010). arXiv:0912.2806 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    P. Langacker, M.-x. Luo, Phys. Rev. D 45, 278 (1992) ADSCrossRefGoogle Scholar
  25. 25.
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987) ADSCrossRefGoogle Scholar
  26. 26.
    M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 409, 22 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Bilenky, J.L. Kneur, F.M. Renard, D. Schildknecht, Nucl. Phys. B 419, 240 (1994). hep-ph/9312202 ADSCrossRefGoogle Scholar
  28. 28.
    K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    J. Fleischer, K. Kolodziej, F. Jegerlehner, Phys. Rev. D 47, 830 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    W. Beenakker, A. Denner, Int. J. Mod. Phys. A 9, 4837 (1994) ADSCrossRefGoogle Scholar
  31. 31.
    A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Phys. Lett. B 612, 223 (2005). [Erratum-ibid. B 704, 667 (2011)]. hep-ph/0502063 ADSCrossRefGoogle Scholar
  32. 32.
    A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724, 247 (2005). [Erratum-ibid. B 854, 504 (2012)]. hep-ph/0505042 ADSCrossRefGoogle Scholar
  33. 33.
    W. Beenakker, F.A. Berends, T. Sack, Nucl. Phys. B 367, 287 (1991) ADSCrossRefGoogle Scholar
  34. 34.
    W. Beenakker, K. Kolodziej, T. Sack, Phys. Lett. B 258, 469 (1991) ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Pankov, N. Paver, A.V. Tsytrinov, Phys. Rev. D 73, 115005 (2006). arXiv:hep-ph/0512131 ADSCrossRefGoogle Scholar
  36. 36.
    G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 585, 223 (2004) ADSCrossRefGoogle Scholar
  37. 37.
    P. Achard et al. (L3 Collaboration), Phys. Lett. B 557, 147 (2003) ADSCrossRefGoogle Scholar
  38. 38.
    J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 54, 345 (2008). arXiv:0801.1235 [hep-ex] ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Couchman, Ph.D. thesis, University College London, 2000 Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • V. V. Andreev
    • 1
  • G. Moortgat-Pick
    • 2
  • P. Osland
    • 3
    • 4
    Email author
  • A. A. Pankov
    • 5
  • N. Paver
    • 6
  1. 1.The F. Scorina Gomel State UniversityGomelBelarus
  2. 2.DESY FLCHamburgGermany
  3. 3.Department of Physics and TechnologyUniversity of BergenBergenNorway
  4. 4.CERNGenève 23Switzerland
  5. 5.The Abdus Salam ICTP Affiliated CentreTechnical University of GomelGomelBelarus
  6. 6.University of Trieste and INFN-Trieste SectionTriesteItaly

Personalised recommendations