Advertisement

The European Physical Journal C

, 72:2141 | Cite as

Higgs signal in chargino-neutralino production at the LHC

  • Diptimoy Ghosh
  • Monoranjan Guchait
  • Dipan SenguptaEmail author
Regular Article - Theoretical Physics

Abstract

We have analyzed the prospect of detecting a Higgs signal in mSUGRA/cMSSM based Supersymmetric (SUSY) model via chargino-neutralino (\({\tilde{\chi}}^{\pm}_{1}\tilde{\chi}^{0}_{2}\)) production at 8 TeV and 14 TeV LHC energies. The signal is studied in the Open image in new window channel following the decays, \({\tilde{\chi}}^{\pm}_{1} \to W^{\pm} \tilde{\chi}^{0}_{1}\), \(\tilde{\chi}^{0}_{2} \to \tilde{\chi}^{0}_{1} h\) and \(h \to b \bar{b}\). In this analysis reconstruction of the Higgs mass out of two b jets plays a very crucial role in determining the signal to background ratio. We follow two techniques to reconstruct the Higgs mass: (A) adding momenta of two identified b jets, (B) jet substructure technique. In addition, imposing a certain set of selection cuts we observe that the significance is better for the method (B). We find that a signal can be observed for the Higgs mass ∼125 GeV with an integrated luminosity 100 fb−1 for both 8 TeV and 14 TeV LHC energies.

Keywords

Higgs Boson Pair Production Minimal Supersymmetric Standard Model Higgs Mass Branch Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Chatrchyan et al. (The CMS Collaboration), arXiv:1207.7235 [hep-ex]
  2. 2.
    G. Aad et al. (The ATLAS Collaboration), arXiv:1207.7214
  3. 3.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173, and references therein ADSCrossRefGoogle Scholar
  5. 5.
    H. Baer, V. Barger, A. Mustafayev, Phys. Rev. D 85 075010 (2012). arXiv:1112.3017 ADSCrossRefGoogle Scholar
  6. 6.
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon Phys. Lett. B 708, 162–169 (2012). arXiv:1112.3028 ADSCrossRefGoogle Scholar
  7. 7.
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath, G. Peim, arXiv:1112.3645
  8. 8.
    The CMS Collaboration, CMS-PAS-SUS-:12-005 (2012) Google Scholar
  9. 9.
    G. Aad et al. (ATLAS Collaboration), arXiv:1206.1760 [hep-ex]
  10. 10.
    H. Baer, M. Bisset, X. Tata, J. Woodside, Phys. Rev. D 46, 303 (1992) ADSCrossRefGoogle Scholar
  11. 11.
    H. Baer, M. Bisset, C. Kao, X. Tata, Phys. Rev. D 50, 316 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    A. Datta, A. Djouadi, M. Guchait, Y. Mambrini, Phys. Rev. D 65, 015007 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    A. Datta, A. Djouadi, M. Guchait, F. Moortgat, Nucl. Phys. B 681, 31 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    S. Gori, P. Schwaller, C.E.M. Wagner, Phys. Rev. D 83, 115022 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    S. Mrenna, arXiv:1110.4078
  16. 16.
    H. Baer, V. Barger, S. Kraml, A. Lessa, W. Sreethawong, X. Tata, arXiv:1201.5382
  17. 17.
    H. Baer, V. Barger, A. Lessa, W. Sreethawong, X. Tata, arXiv:1201.2949
  18. 18.
    P. Byakti, D. Ghosh, arXiv:1204.0415
  19. 19.
    S. Heinemeyer, F.v.d. Pahlen, H. Rzehak, C. Schappacher, arXiv:1201.6305
  20. 20.
    A. Arbey, F. Mahmoudi, Comput. Phys. Commun. 182, 1582 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175 ADSCrossRefGoogle Scholar
  22. 22.
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, J. High Energy Phys. 0307, 001 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    S. Hoche, F. Kraus, N. Lavesson, L. Lonnbald, M. Mangano, arXiv:hep-ph/0602031
  24. 24.
    M. Cacciari, G.P. Salam, G. Soyez, Phys. Lett. B 641, 57 (2006). arXiv:hep-ph/0512210 ADSCrossRefGoogle Scholar
  25. 25.
    Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). arXiv:hep-ph/9707323 ADSCrossRefGoogle Scholar
  26. 26.
    H.L. Lai et al. (CTEQ Collaboration), Eur. Phys. J. C 12, 375 (2000) ADSCrossRefGoogle Scholar
  27. 27.
    A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635–644 (2007) ADSGoogle Scholar
  28. 28.
    CMS Collaboration Report NO.CMS-PAS-BTV-11-001 Google Scholar
  29. 29.
    M. Guchait, D. Sengupta, Phys. Rev. D 84, 055010 (2011). arXiv:1102.4785 ADSCrossRefGoogle Scholar
  30. 30.
    D. Ghosh, M. Guchait, S. Raychaudhuri, D. Sengupta, arXiv:1205.2283
  31. 31.
    R.M. Chatterjee, M. Guchait, D. Sengupta, arXiv:1206.5770
  32. 32.
    A. Abdesallam et al., Eur. Phys. J. C 71, 1661 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    A. Knutsson, talk given in MB & UE meeting, CERN, 17th June, 2011 Google Scholar
  35. 35.
    W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492, 51 (1997) ADSGoogle Scholar
  36. 36.
    N. Kidonakis, arXiv:1109.3231
  37. 37.
    D. Ghosh, M. Guchait, D. Sengupta, in preparation Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • Diptimoy Ghosh
    • 1
  • Monoranjan Guchait
    • 2
  • Dipan Sengupta
    • 2
    Email author
  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Department of High Energy PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations