Advertisement

The European Physical Journal C

, 72:2140 | Cite as

New gauge anomalies and topological invariants in various dimensions

  • Ignatios Antoniadis
  • George SavvidyEmail author
Regular Article - Theoretical Physics

Abstract

In the model of extended non-Abelian tensor gauge fields we have found new metric-independent densities: the exact (2n+3)-forms and their secondary characteristics, the (2n+2)-forms as well as the exact 6n-forms and the corresponding secondary (6n−1)-forms. These forms are the analogs of the Pontryagin densities: the exact 2n-forms and Chern–Simons secondary characteristics, the (2n−1)-forms. The (2n+3)- and 6n-forms are gauge invariant densities, while the (2n+2)- and (6n−1)-forms transform non-trivially under gauge transformations, which we compare with the corresponding transformations of the Chern–Simons secondary characteristics. This construction allows to identify new potential gauge anomalies in various dimensions.

Keywords

Gauge Transformation Gauge Field Gauge Parameter Invariant Density Gauge Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of us G.S. would like to thank Ludwig Faddeev, Luis Alvarez-Gaume and Raymond Stora for stimulating discussions and CERN Theory Division, where part of this work was completed, for hospitality. This work was supported in part by the European Commission under the ERC Advanced Grant 226371 and the contract PITN-GA-2009-237920.

References

  1. 1.
    S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969) ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Bell, R. Jackiw, A PCAC puzzle: π 0 to γγ in the sigma model. Nuovo Cimento A 60, 47 (1969) ADSCrossRefGoogle Scholar
  3. 3.
    W.A. Bardeen, Anomalous Ward identities in spinor field theories. Phys. Rev. 184, 1848 (1969) ADSCrossRefGoogle Scholar
  4. 4.
    J. Wess, B. Zumino, Consequences of anomalous Ward identities. Phys. Lett. B 37, 95 (1971) MathSciNetADSGoogle Scholar
  5. 5.
    P.H. Frampton, T.W. Kephart, The analysis of anomalies in higher space–time dimensions. Phys. Rev. D 28, 1010 (1983) ADSCrossRefGoogle Scholar
  6. 6.
    B. Zumino, Chiral anomalies and differential geometry. Lectures given at Les Houches, August 1983, LBL-16747, UCB-PTH-83/16 Google Scholar
  7. 7.
    R. Stora, Algebraic structure and topological origin of anomalies, LAPP-TH-94, Nov 1983. 20 pp. Seminar given at Cargese Summer Inst.: Progress in Gauge Field Theory, Cargese, France, Sep 1–15, 1983. Published in Cargese Summer Inst. 1983:0543 Google Scholar
  8. 8.
    L.D. Faddeev, Operator anomaly for the Gauss law. Phys. Lett. B 145, 81 (1984) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    L.D. Faddeev, S.L. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Theor. Math. Phys. 60, 770 (1985). Teor. Mat. Fiz., 60, 1984, 206 CrossRefGoogle Scholar
  10. 10.
    J. Mickelsson, Chiral anomalies in even and odd dimensions. Commun. Math. Phys. 97, 361 (1985) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    B. Zumino, Y.-S. Wu, A. Zee, Chiral anomalies, higher dimensions, and differential geometry. Nucl. Phys. B 239, 477 (1984) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Manes, R. Stora, B. Zumino, Algebraic study of chiral anomalies. Commun. Math. Phys. 102, 157 (1985) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    S.B. Treiman, E. Witten, R. Jackiw, B. Zumino, Current Algebra and Anomalies (World Scientific, Singapore, 1985), 537 p. zbMATHGoogle Scholar
  14. 14.
    L.D. Faddeev, Hamiltonian approach to the theory of anomalies, in Schladming 1987, Proceedings, Recent Developments in Mathematical Physics (1987), pp. 137–159 CrossRefGoogle Scholar
  15. 15.
    L.D. Faddeev, S.L. Shatashvili, Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies. Phys. Lett. B 167, 225 (1986) ADSCrossRefGoogle Scholar
  16. 16.
    D.K. Faddeev, Dokl. Akad. Nauk SSSR 8, 361 (1947) MathSciNetGoogle Scholar
  17. 17.
    L. Alvarez-Gaume, An introduction to anomalies, HUTP-85/A092. Lectures given at the International School of Mathematical Physics on Fundamental Problems of Gauge Field Theory, Erice, Italy, 1–14 July 1985 Google Scholar
  18. 18.
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz, Yu.S. Tyupkin, Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. B 59, 85 (1975) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    C.G. Callan, R.F. Dashen, D.J. Gross, The structure of the gauge theory vacuum. Phys. Lett. B 63, 334 (1976) ADSCrossRefGoogle Scholar
  20. 20.
    R. Jackiw, C. Rebbi, Vacuum periodicity in a Yang–Mills quantum theory. Phys. Rev. Lett. 37, 172 (1976) ADSCrossRefGoogle Scholar
  21. 21.
    E. Witten, Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    C. Bouchiat, J. Iliopoulos, P. Meyer, An anomaly free version of Weinberg’s model. Phys. Lett. B 38, 519 (1972) ADSGoogle Scholar
  23. 23.
    D.J. Gross, R. Jackiw, Effect of anomalies on quasirenormalizable theories. Phys. Rev. D 6, 477 (1972) ADSCrossRefGoogle Scholar
  24. 24.
    H. Georgi, S.L. Glashow, Gauge theories without anomalies. Phys. Rev. D 6, 429 (1972) ADSCrossRefGoogle Scholar
  25. 25.
    S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive gauge theories. Phys. Rev. Lett. 48, 975 (1982) ADSCrossRefGoogle Scholar
  26. 26.
    S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories. Ann. Phys. 140, 372 (1982) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    J.F. Schonfeld, A mass term for three-dimensional gauge fields. Nucl. Phys. B 185, 157 (1981) ADSCrossRefGoogle Scholar
  28. 28.
    E. Cremmer, J. Scherk, Spontaneous dynamical breaking of gauge symmetry in dual models. Nucl. Phys. B 72, 117 (1974) ADSCrossRefGoogle Scholar
  29. 29.
    M. Kalb, P. Ramond, Classical direct interstring action. Phys. Rev. D 9, 2273 (1974) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Nambu, Magnetic and electric confinement of quarks. Phys. Rep. 23, 250 (1976) ADSCrossRefGoogle Scholar
  31. 31.
    A. Aurilia, Y. Takahashi, Generalized Maxwell equations and the gauge mixing mechanism of mass generation. Prog. Theor. Phys. 66, 693 (1981) ADSCrossRefGoogle Scholar
  32. 32.
    D.Z. Freedman, P.K. Townsend, Antisymmetric tensor gauge theories and nonlinear sigma models. Nucl. Phys. B 177, 282 (1981) MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    R. Rohm, E. Witten, The antisymmetric tensor field in superstring theory. Ann. Phys. 170, 454 (1986) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    T.J. Allen, M.J. Bowick, A. Lahiri, Topological mass generation in (3+1)-dimensions. Mod. Phys. Lett. A 6, 559 (1991) MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    A.A. Slavnov, S.A. Frolov, Quantization of nonabelian antisymmetric tensor field. Theor. Math. Phys. 75, 470 (1988). Teor. Mat. Fiz., 75, 1988, 201 MathSciNetCrossRefGoogle Scholar
  36. 36.
    G. Dvali, R. Jackiw, S.Y. Pi, Topological mass generation in four dimensions. Phys. Rev. Lett. 96, 081602 (2006). arXiv:hep-th/0511175 ADSCrossRefGoogle Scholar
  37. 37.
    G. Savvidy, Topological mass generation in four-dimensional gauge theory. Phys. Lett. B 694, 65 (2010). arXiv:1001.2808 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    G. Savvidy, Non-Abelian tensor gauge fields: generalization of Yang–Mills theory. Phys. Lett. B 625, 341 (2005). arXiv:hep-th/0509049 MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    G. Savvidy, Non-Abelian tensor gauge fields. I. Int. J. Mod. Phys. A 21, 4931 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    G. Savvidy, Non-Abelian tensor gauge fields. II. Int. J. Mod. Phys. A 21, 4959 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    R. Jackiw, Introduction to the Yang–Mills quantum theory. Rev. Mod. Phys. 52, 661 (1980) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    R. Jackiw, Chern–Simons integral as a surface term. arXiv:math-ph/0408051
  43. 43.
    R. Jackiw, Topological aspects of gauge theories. arXiv:hep-th/0501178
  44. 44.
    M. Henneaux, V.E.R. Lemes, C.A.G. Sasaki, S.P. Sorella, O.S. Ventura, L.C.Q. Vilar, A no-go theorem for the nonabelian topological mass mechanism in four dimensions. Phys. Lett. B 410, 195 (1997). arXiv:hep-th/9707129 ADSCrossRefGoogle Scholar
  45. 45.
    R. Grimm, S. Marculescu, The structure of anomalies for arbitrary dimension of the space–time. Nucl. Phys. B 68, 203 (1974) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    P.K. Townsend, G. Sierra, Chiral anomalies and constraints on the gauge group in higher dimensional supersymmetric Yang–Mills theories. Nucl. Phys. B 222, 493 (1983) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    L. Alvarez-Gaume, E. Witten, Gravitational anomalies. Nucl. Phys. B 234, 269 (1984) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    W.A. Bardeen, B. Zumino, Consistent and covariant anomalies in gauge and gravitational theories. Nucl. Phys. B 244, 421 (1984) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    L. Alvarez-Gaume, P.H. Ginsparg, The topological meaning of nonabelian anomalies. Nucl. Phys. B 243, 449 (1984) MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    L. Alvarez-Gaume, P.H. Ginsparg, The structure of gauge and gravitational anomalies. Ann. Phys. 161, 423 (1985) [Erratum-ibid. 171, 233 (1986)] MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. 51.
    L. Alvarez-Gaume, P.H. Ginsparg, Geometry anomalies. Nucl. Phys. B 262, 439 (1985) MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    L. Alvarez-Gaume, S. Della Pietra, G.W. Moore, Anomalies and odd dimensions. Ann. Phys. 163, 288 (1985) MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    S.B. Giddings, A. Strominger, Axion induced topology change in quantum gravity and string theory. Nucl. Phys. B 306, 890 (1988) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    M.J. Bowick, S.B. Giddings, J.A. Harvey, G.T. Horowitz, A. Strominger, Axionic black holes and a Bohm-Aharonov effect for strings. Phys. Rev. Lett. 61, 2823 (1988) MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    J. Thierry-Mieg, Y. Neéman, Exterior gauging of an internal supersymmetry and SU(2/1) quantum asthenodynamics. Proc. Natl. Acad. Sci. USA 79, 7068 (1982) ADSzbMATHCrossRefGoogle Scholar
  56. 56.
    M.B. Cantcheff, J.A. Helayel-Neto, The doublet extension of tensor gauge potentials and a reassessment of the non-abelian topological mass mechanism. arXiv:1112.4301 [hep-th]
  57. 57.

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsCERN Theory DivisionGeneva 23Switzerland

Personalised recommendations