Advertisement

The European Physical Journal C

, 72:2139 | Cite as

Expansion by regions: revealing potential and Glauber regions automatically

  • Bernd JantzenEmail author
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
Regular Article - Theoretical Physics

Abstract

When performing asymptotic expansions using the strategy of expansion by regions, it is a non-trivial task to find the relevant regions. The recently published Mathematica code asy.m automates this task, but it has not been able to detect potential regions in threshold expansions or Glauber regions. In this work we present an algorithm and its implementation in the update asy2.m which also reveals potential and Glauber regions automatically.

Keywords

Delta Function Parametric Representation Loop Momentum Feynman Integral Collinear Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich/Transregio 9 “Computergestützte Theoretische Teilchenphysik”. The work of A.S. and V.S. is also supported by the Russian Foundation for Basic Research through grant 11-02-01196. The authors thank M. Beneke and A. Pak for helpful discussions.

References

  1. 1.
    K.G. Chetyrkin, Theor. Math. Phys. 75, 346 (1988) [Teor. Mat. Fiz. 75, 26 (1988)] MathSciNetCrossRefGoogle Scholar
  2. 2.
    K.G. Chetyrkin, Theor. Math. Phys. 76, 809 (1988) [Teor. Mat. Fiz. 76, 207 (1988)] MathSciNetCrossRefGoogle Scholar
  3. 3.
    S.G. Gorishny, Nucl. Phys. B 319, 633 (1989) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    V.A. Smirnov, Commun. Math. Phys. 134, 109 (1990) ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    V.A. Smirnov, Mod. Phys. Lett. A 10, 1485 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts in Modern Physics, vol. 177 (Springer, Berlin, 2002) zbMATHGoogle Scholar
  7. 7.
    T. Seidensticker, arXiv:hep-ph/9905298
  8. 8.
    R. Harlander, T. Seidensticker, M. Steinhauser, Phys. Lett. B 426, 125 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    V.A. Smirnov, E.R. Rakhmetov, Theor. Math. Phys. 120, 870 (1999) [Teor. Mat. Fiz. 120, 64 (1999)] zbMATHCrossRefGoogle Scholar
  11. 11.
    V.A. Smirnov, Phys. Lett. B 465, 226 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    B. Jantzen, J. High Energy Phys. 12, 076 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Smirnov, V.A. Smirnov, M. Tentyukov, Comput. Phys. Commun. 182, 790 (2011) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    A.V. Smirnov, M.N. Tentyukov, Comput. Phys. Commun. 180, 735 (2009) ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    A. Pak, A. Smirnov, Eur. Phys. J. C 71, 1626 (2011) ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    V.A. Smirnov, Feynman Integral Calculus (Springer, Berlin, 2006) Google Scholar
  18. 18.

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • Bernd Jantzen
    • 1
    Email author
  • Alexander V. Smirnov
    • 2
    • 4
  • Vladimir A. Smirnov
    • 3
    • 4
  1. 1.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany
  2. 2.Scientific Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische TeilchenphysikKITKarlsruheGermany

Personalised recommendations