Advertisement

The European Physical Journal C

, 72:2136 | Cite as

Heavy scalar tau decays in the complex MSSM: a full one-loop analysis

  • S. HeinemeyerEmail author
  • C. Schappacher
Regular Article - Theoretical Physics

Abstract

We evaluate all two-body decay modes of the heavy scalar tau in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM) and no generation mixing. The evaluation is based on a full one-loop calculation of all decay channels, also including hard and soft QED radiation. The renormalization of the relevant sectors is briefly reviewed. The dependence of the heavy scalar tau decay on the relevant cMSSM parameters is analyzed numerically, including also the decay to Higgs bosons and another scalar lepton or to a tau and the lightest neutralino. We find sizable contributions to many partial decay widths and branching ratios. They are mostly of \(\mathcal{O}(5\mbox{--}10~\%)\) of the tree-level results, but can go up to 20 %. These contributions are potentially important for the correct interpretation of scalar tau decays at the LHC and, if kinematically allowed, at the ILC or CLIC. The evaluation of the branching ratios of the heavy scalar tau will be implemented into the Fortran code FeynHiggs.

Keywords

Higgs Boson Minimal Supersymmetric Standard Model Decay Width Light Supersymmetric Particle Charged Higgs Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank F. Campanario, T. Hahn, W. Hollik, O. Kittel, K. Kovarik, F. von der Pahlen, H. Rzehak and G. Weiglein for helpful discussions. We furthermore thank H. Eberl for assistance with the code SFOLD and corresponding discussions. The work of S.H. was supported in part by CICYT (grant FPA 2010-22163-C02-01) and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064.

References

  1. 1.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  3. 3.
    R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988) Google Scholar
  4. 4.
    H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984) ADSCrossRefGoogle Scholar
  6. 6.
    A. Pilaftsis, Phys. Rev. D 58, 096010 (1998). arXiv:hep-ph/9803297 ADSCrossRefGoogle Scholar
  7. 7.
    A. Pilaftsis, Phys. Lett. B 435, 88 (1998). arXiv:hep-ph/9805373 ADSCrossRefGoogle Scholar
  8. 8.
    A. Pilaftsis, C. Wagner, Nucl. Phys. B 553, 3 (1999). arXiv:hep-ph/9902371 ADSCrossRefGoogle Scholar
  9. 9.
    S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001). arXiv:hep-ph/0108059 ADSCrossRefGoogle Scholar
  10. 10.
    J. Lindert, F. Steffen, M. Trenkel, J. High Energy Phys. 1108, 151 (2011). arXiv:1106.4005 [hep-ph] ADSCrossRefGoogle Scholar
  11. 11.
    G. Aad et al. (The ATLAS Collaboration) arXiv:0901.0512
  12. 12.
    G. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    TESLA Technical Design Report (TESLA Collaboration), Part 3, Physics at an e + e Linear Collider. arXiv:hep-ph/0106315, see: tesla.desy.de/new_pages/TDR_CD/start.html
  14. 14.
    K. Ackermann et al. DESY-PROC-2004-01 Google Scholar
  15. 15.
    J. Brau et al. (ILC Collaboration), ILC Reference Design Report Volume 1—Executive Summary. arXiv:0712.1950 [physics.acc-ph]
  16. 16.
    G. Aarons et al. (ILC Collaboration), International Linear Collider Reference Design Report Volume 2: Physics at the ILC. arXiv:0709.1893 [hep-ph]
  17. 17.
    E. Accomando et al. (CLIC Physics Working Group). arXiv:hep-ph/0412251; The CLIC CDR can be found at https://edms.cern.ch/document/1180032
  18. 18.
    G. Weiglein et al. (LHC/ILC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364 ADSCrossRefGoogle Scholar
  19. 19.
    A. De Roeck et al., Eur. Phys. J. C 66, 525 (2010). arXiv:0909.3240 [hep-ph] ADSCrossRefGoogle Scholar
  20. 20.
    A. De Roeck, J. Ellis, S. Heinemeyer, CERN Cour. 49(10), 27 (2009) Google Scholar
  21. 21.
    A. Bartl, H. Eberl, S. Kraml, W. Majerotto, W. Porod, A. Sopczak, Z. Phys. C 76, 549 (1997). arXiv:hep-ph/9701336 CrossRefGoogle Scholar
  22. 22.
    A. Bartl, H. Eberl, K. Hidaka, S. Kraml, T. Kon, W. Majerotto, W. Porod, Y. Yamada, Phys. Lett. B 460, 157 (1999). arXiv:hep-ph/9904417 ADSCrossRefGoogle Scholar
  23. 23.
    A. Bartl, H. Eberl, S. Kraml, W. Majerotto, W. Porod, Eur. Phys. J. C 2, 6 (2000). arXiv:hep-ph/0002115 Google Scholar
  24. 24.
    M. Mühlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  25. 25.
    A. Bartl, K. Hidaka, T. Kernreiter, W. Porod, Phys. Lett. B 538, 137 (2002). arXiv:hep-ph/0204071 ADSCrossRefGoogle Scholar
  26. 26.
    A. Bartl, K. Hidaka, T. Kernreiter, W. Porod, Phys. Rev. D 66, 115009 (2002). arXiv:hep-ph/0207186 ADSCrossRefGoogle Scholar
  27. 27.
    L. Selbuz, Z. Aydin, Turk. J. Phys. 33, 1 (2009). arXiv:0808.2540 [hep-ph] Google Scholar
  28. 28.
    S. Kraml, D. Nhung, J. High Energy Phys. 0802, 061 (2008). arXiv:0712.1986 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    J. Guasch, W. Hollik, J. Sola, J. High Energy Phys. 0210, 040 (2002). arXiv:hep-ph/0207364 ADSCrossRefGoogle Scholar
  30. 30.
    A. Arhrib, R. Benbrik, Phys. Rev. D 71, 095001 (2005). arXiv:hep-ph/0412349 ADSCrossRefGoogle Scholar
  31. 31.
    H. Hlucha, H. Eberl, W. Frisch, arXiv:1104.2151 [hep-ph]
  32. 32.
    S. Choi, H.-U. Martyn, P. Zerwas, Eur. Phys. J. C 44, 175 (2005). arXiv:hep-ph/0508021 ADSCrossRefGoogle Scholar
  33. 33.
    T. Gajdosik, R. Godbole, S. Kraml, J. High Energy Phys. 0409, 051 (2004). arXiv:hep-ph/0405167 ADSCrossRefGoogle Scholar
  34. 34.
    H. Dreiner, O. Kittel, S. Kulkarni, A. Marold, Phys. Rev. D 83, 095012 (2011). arXiv:1011.2449 [hep-ph] ADSCrossRefGoogle Scholar
  35. 35.
    O. Kittel, A. Pilaftsis, Nucl. Phys. B 856, 682 (2012). arXiv:1108.3314 [hep-ph] ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320; see www.feynhiggs.de ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  38. 38.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  39. 39.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  40. 40.
    S. Heinemeyer, H. Rzehak, C. Schappacher, Phys. Rev. D 82, 075010 (2010). arXiv:1007.0689 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    S. Heinemeyer, H. Rzehak, C. Schappacher, PoSCHARGED 2010, 039 (2010). arXiv:1012.4572 [hep-ph] Google Scholar
  42. 42.
    T. Fritzsche, S. Heinemeyer, H. Rzehak, C. Schappacher, arXiv:1111.7289 [hep-ph]
  43. 43.
    S. Heinemeyer, F.V.D. Pahlen, C. Schappacher, Eur. Phys. J. C 72, 1892 (2012). arXiv:1112.0760 [hep-ph] ADSCrossRefGoogle Scholar
  44. 44.
    S. Heinemeyer, C. Schappacher, Eur. Phys. J. C 72, 1905 (2012). arXiv:1112.2830 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Lett. B 652, 300 (2007). arXiv:0705.0746 [hep-ph] ADSCrossRefGoogle Scholar
  46. 46.
    A. Bartl, H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, W. Porod, Y. Yamada, Phys. Rev. D 59, 115007 (1999). arXiv:hep-ph/9806299 ADSCrossRefGoogle Scholar
  47. 47.
    A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. Lett. 78, 3626 (1997). arXiv:hep-ph/9612363 ADSCrossRefGoogle Scholar
  48. 48.
    A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. D 57, 4179 (1998). arXiv:hep-ph/9710438 ADSCrossRefGoogle Scholar
  49. 49.
    W. Hollik, H. Rzehak, Eur. Phys. J. C 32, 127 (2003). arXiv:hep-ph/0305328 ADSCrossRefGoogle Scholar
  50. 50.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114 ADSCrossRefGoogle Scholar
  51. 51.
    R. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977) ADSCrossRefGoogle Scholar
  52. 52.
    R. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977) ADSCrossRefGoogle Scholar
  53. 53.
    S. Dimopoulos, S. Thomas, Nucl. Phys. B 465, 23 (1996). arXiv:hep-ph/9510220 ADSCrossRefGoogle Scholar
  54. 54.
    D. Demir, Phys. Rev. D 60, 055006 (1999). arXiv:hep-ph/9901389 ADSCrossRefGoogle Scholar
  55. 55.
    M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Nucl. Phys. B 625, 345 (2002). arXiv:hep-ph/0111245 ADSCrossRefGoogle Scholar
  56. 56.
    A. Fowler, PhD Thesis, Durham University, UK, September (2010) Google Scholar
  57. 57.
    A. Fowler, G. Weiglein, J. High Energy Phys. 1001, 108 (2010). arXiv:0909.5165 [hep-ph] ADSCrossRefGoogle Scholar
  58. 58.
    T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619 (2002). arXiv:hep-ph/0203159 CrossRefGoogle Scholar
  59. 59.
    T. Fritzsche, Diploma thesis, Institut für Theoretische Physik, Universität Karlsruhe, Germany, December (2000). See: www-itp.particle.uni-karlsruhe.de/diplomatheses.de.shtml
  60. 60.
    T. Fritzsche, PhD thesis, Cuvillier Verlag, Göttingen (2005). ISBN 3-86537-577-4 Google Scholar
  61. 61.
    A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, arXiv:1107.5218 [hep-ph]
  62. 62.
    N. Baro, F. Boudjema, Phys. Rev. D 80, 076010 (2009). arXiv:0906.1665 [hep-ph] ADSCrossRefGoogle Scholar
  63. 63.
    J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990) ADSCrossRefGoogle Scholar
  64. 64.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260 ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349. The program, the user’s guide and the MSSM model files are available via. www.feynarts.de ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  67. 67.
    F. del Aguila, A. Culatti, R. Munoz Tapia, M. Perez-Victoria, Nucl. Phys. B 537, 561 (1999). arXiv:hep-ph/9806451 ADSzbMATHCrossRefGoogle Scholar
  68. 68.
    W. Siegel, Phys. Lett. B 84, 193 (1979) MathSciNetADSCrossRefGoogle Scholar
  69. 69.
    D. Capper, D. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980) ADSCrossRefGoogle Scholar
  70. 70.
    D. Stöckinger, J. High Energy Phys. 0503, 076 (2005). arXiv:hep-ph/0503129 ADSCrossRefGoogle Scholar
  71. 71.
    W. Hollik, D. Stöckinger, Phys. Lett. B 634, 63 (2006). arXiv:hep-ph/0509298 ADSCrossRefGoogle Scholar
  72. 72.
    A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph] Google Scholar
  73. 73.
    S. Dittmaier, Nucl. Phys. B 675 (2003). arXiv:0308.3246 [hep-ph]
  74. 74.
    W. Beenakker, A. Denner, Nucl. Phys. B 338, 349 (1990) ADSCrossRefGoogle Scholar
  75. 75.
    The couplings can be found in the files MSSM.ps.gz and HMix.ps.gz as Part of the FeynArts Package. [63, 64, 65] Google Scholar
  76. 76.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  77. 77.
    LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033
  78. 78.
    LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042
  79. 79.
    The TEVNPH Working Group (CDF and D. Collaborations). arXiv:1203.3774 [hep-ex]
  80. 80.
    ATLAS Collaboration, arXiv:1202.1408 [hep-ex]
  81. 81.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]
  82. 82.
    J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983) ADSCrossRefGoogle Scholar
  83. 83.
    M. Claudson, L. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983) ADSCrossRefGoogle Scholar
  84. 84.
    C. Kounnas, A. Lahanas, D. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984) ADSCrossRefGoogle Scholar
  85. 85.
    J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988) ADSCrossRefGoogle Scholar
  86. 86.
    J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294 ADSCrossRefGoogle Scholar
  87. 87.
    P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199 (1994). arXiv:hep-ph/9403306 ADSCrossRefGoogle Scholar
  88. 88.
    A. Strumia, Nucl. Phys. B 482, 24 (1996). arXiv:hep-ph/9604417 ADSCrossRefGoogle Scholar
  89. 89.
    M. Dugan, B. Grinstein, L. Hall, Nucl. Phys. B 255, 413 (1985) ADSCrossRefGoogle Scholar
  90. 90.
    D. Demir, O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Nucl. Phys. B 680, 339 (2004). arXiv:hep-ph/0311314 ADSCrossRefGoogle Scholar
  91. 91.
    D. Chang, W. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999). Erratum-ibid. 83, 3972 (1999). arXiv:hep-ph/9811202 ADSCrossRefGoogle Scholar
  92. 92.
    A. Pilaftsis, Phys. Lett. B 471, 174 (1999). arXiv:hep-ph/9909485 ADSCrossRefGoogle Scholar
  93. 93.
    O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Phys. Rev. D 70, 016003 (2004). arXiv:hep-ph/0402023 ADSCrossRefGoogle Scholar
  94. 94.
    W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 416, 345 (1998). arXiv:hep-ph/9707437 ADSCrossRefGoogle Scholar
  95. 95.
    W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 425, 322 (1998). arXiv:hep-ph/9711322 ADSCrossRefGoogle Scholar
  96. 96.
    P. Nath, Phys. Rev. Lett. 66, 2565 (1991) ADSCrossRefGoogle Scholar
  97. 97.
    Y. Kizukuri, N. Oshimo, Phys. Rev. D 46, 3025 (1992) ADSCrossRefGoogle Scholar
  98. 98.
    T. Ibrahim, P. Nath, Phys. Lett. B 418, 98 (1998). arXiv:hep-ph/9707409 MathSciNetADSCrossRefGoogle Scholar
  99. 99.
    T. Ibrahim, P. Nath, Phys. Rev. D 57, 478 (1998). Erratum-ibid. D 58, 019901 (1998); Erratum-ibid. D 60, 079903 (1998); Erratum-ibid. 60, 119901 (1999). arXiv:hep-ph/9708456 ADSCrossRefGoogle Scholar
  100. 100.
    M. Brhlik, G. Good, G. Kane, Phys. Rev. D 59, 115004 (1999). arXiv:hep-ph/9810457 ADSCrossRefGoogle Scholar
  101. 101.
    S. Abel, S. Khalil, O. Lebedev, Nucl. Phys. B 606, 151 (2001). arXiv:hep-ph/0103320 ADSCrossRefGoogle Scholar
  102. 102.
    Y. Li, S. Profumo, M. Ramsey-Musolf, J. High Energy Phys. 1008, 062 (2010). arXiv:1006.1440 [hep-ph] ADSCrossRefGoogle Scholar
  103. 103.
    V. Barger, T. Falk, T. Han, J. Jiang, T. Li, T. Plehn, Phys. Rev. D 64, 056007 (2001). arXiv:hep-ph/0101106 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  2. 2.Institut für Theoretische Physik, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations