Advertisement

The European Physical Journal C

, 72:2131 | Cite as

Linear vs. non-linear QCD evolution: from HERA data to LHC phenomenology

  • J. L. Albacete
  • J. G. Milhano
  • P. Quiroga-AriasEmail author
  • J. Rojo
Regular Article - Theoretical Physics

Abstract

The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.

Keywords

Initial Scale HERA Data DGLAP Evolution Reduced Cross Section DGLAP Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research of J.L.A. is supported by a fellowship from the Théorie LHC France initiative funded by the IN2P3. J.R. is grateful to S. Forte for discussions. The research of J.R. has been supported by a Marie Curie Intra-European Fellowship of the European Community’s 7th Framework Programme under contract number PIEF-GA-2010-272515. J.G.M. acknowledge the support of Fundação para a Ciência e a Tecnologia (Portugal) under project CERN/FP/116379/2010. The work of P.Q.A. is funded by the French ANR under contract ANR-09-BLAN-0060.

References

  1. 1.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) ADSGoogle Scholar
  2. 2.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Google Scholar
  3. 3.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977) ADSCrossRefGoogle Scholar
  4. 4.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977) MathSciNetADSGoogle Scholar
  5. 5.
    I. Balitsky, L. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) Google Scholar
  6. 6.
    M. Ciafaloni et al., Phys. Rev. D 68, 114003 (2003). hep-ph/0307188 ADSGoogle Scholar
  7. 7.
    G. Altarelli, R.D. Ball, S. Forte, Nucl. Phys. B 799, 199 (2008). arXiv:0802.0032 ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    S. Forte, G. Altarelli, R.D. Ball, Nucl. Phys. Proc. Suppl. 191, 64 (2009). arXiv:0901.1294 ADSCrossRefGoogle Scholar
  9. 9.
    C. White, R. Thorne, Phys. Rev. D 75, 034005 (2007). hep-ph/0611204 ADSGoogle Scholar
  10. 10.
    I. Balitsky, Nucl. Phys. B 463, 99 (1996). hep-ph/9509348 ADSCrossRefGoogle Scholar
  11. 11.
    Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999). hep-ph/9901281 ADSGoogle Scholar
  12. 12.
    J. Jalilian-Marian et al., Phys. Rev. D 59, 014014 (1998). hep-ph/9706377 ADSGoogle Scholar
  13. 13.
    A. Kovner, J.G. Milhano, H. Weigert, Phys. Rev. D 62, 114005 (2000). hep-ph/0004014 ADSGoogle Scholar
  14. 14.
    H. Weigert, Nucl. Phys. A 703, 823 (2002). hep-ph/0004044 ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Stasto, K.J. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001). hep-ph/0007192 ADSCrossRefGoogle Scholar
  16. 16.
    E. Gardi et al., Nucl. Phys. A 784, 282 (2007). hep-ph/0609087 ADSCrossRefGoogle Scholar
  17. 17.
    Y. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007). hep-ph/0609090 ADSCrossRefGoogle Scholar
  18. 18.
    I.I. Balitsky, Phys. Rev. D 75, 014001 (2007). hep-ph/0609105 ADSCrossRefGoogle Scholar
  19. 19.
    I. Balitsky, G.A. Chirilli, Phys. Rev. D 77, 014019 (2008). arXiv:0710.4330 ADSGoogle Scholar
  20. 20.
    J.L. Albacete, Y.V. Kovchegov, Phys. Rev. D 75, 125021 (2007). arXiv:0704.0612 [hep-ph] ADSGoogle Scholar
  21. 21.
    J.L. Albacete et al., Phys. Rev. D 80, 034031 (2009). arXiv:0902.1112 ADSGoogle Scholar
  22. 22.
    J.L. Albacete et al., Eur. Phys. J. C 71, 1705 (2011). arXiv:1012.4408 ADSCrossRefGoogle Scholar
  23. 23.
    F.D. Aaron et al. (H1 Collaboration), J. High Energy Phys. 01, 109 (2010). arXiv:0911.0884 ADSCrossRefGoogle Scholar
  24. 24.
    J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 875, 29 (2012). arXiv:1108.1867 ADSCrossRefGoogle Scholar
  25. 25.
    F. Caola, S. Forte, Phys. Rev. Lett. 101, 022001 (2008). arXiv:0802.1878 ADSCrossRefGoogle Scholar
  26. 26.
    S. Forte, R.D. Ball, Acta Phys. Pol. B 26, 2097 (1995). hep-ph/9512208 Google Scholar
  27. 27.
    T. Lastovicka, Eur. Phys. J. C 24, 529 (2002). hep-ph/0203260 CrossRefGoogle Scholar
  28. 28.
    L. Del Debbio et al. (The NNPDF Collaboration), J. High Energy Phys. 03, 080 (2005). hep-ph/0501067 Google Scholar
  29. 29.
    F. Caola, S. Forte, J. Rojo, Phys. Lett. B 686, 127 (2010). arXiv:0910.3143 ADSGoogle Scholar
  30. 30.
    F. Caola, S. Forte, J. Rojo, Nucl. Phys. A 854, 32 (2011). arXiv:1007.5405 ADSCrossRefGoogle Scholar
  31. 31.
    S. Moch, J. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    S. Moch, J. Vermaseren, A. Vogt, Phys. Lett. B 691, 129 (2004) MathSciNetzbMATHGoogle Scholar
  33. 33.
    R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 855, 153 (2012). arXiv:1107.2652 ADSCrossRefGoogle Scholar
  34. 34.
    S. Forte et al., Nucl. Phys. B 834, 116 (2010). arXiv:1001.2312 ADSzbMATHCrossRefGoogle Scholar
  35. 35.
    R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 809, 1 (2009). arXiv:0808.1231 ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 823, 195 (2009). arXiv:0906.1958 ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    R.D. Ball et al. (The NNPDF Collaboration), Nucl. Phys. B 838, 136 (2010). arXiv:1002.4407 ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    R.D. Ball et al. (The NNPDF Collaboration), J. High Energy Phys. 05, 075 (2010). arXiv:0912.2276 ADSCrossRefGoogle Scholar
  39. 39.
    H.L. Lai et al., Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 ADSGoogle Scholar
  40. 40.
    H1 and ZEUS Collaborations, H1prelim–10-044, ZEUS-prel-10-008 (2010) Google Scholar
  41. 41.
    H1 and ZEUS Collaborations, H1prelim–11-042, ZEUS-prel-11-00 (2011) Google Scholar
  42. 42.
    M. Klein et al., in EPAC’08, 11th European Particle Accelerator Conference, (2008) Google Scholar
  43. 43.
    A. Deshpande, R. Milner, R. Venugopalan (Eds.), The electron ion collider: a white paper. BNL Report BNL-68933-02/07-REV Google Scholar
  44. 44.
    A. Accardi, V. Guzey, J. Rojo, arXiv:1106.3839 (2011)
  45. 45.
    J. Rojo, F. Caola, arXiv:0906.2079 (2009)
  46. 46.
    R.D. Ball et al., Phys. Lett. B 707, 66 (2012). arXiv:1110.2483 ADSGoogle Scholar
  47. 47.
    C. Anastasiou et al., Phys. Rev. D 69, 094008 (2004). hep-ph/0312266 ADSGoogle Scholar
  48. 48.
    M. Aliev et al., Comput. Phys. Commun. 182, 1034 (2011). arXiv:1007.1327 ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    R. Bonciani, G. Degrassi, A. Vicini, J. High Energy Phys. 11, 095 (2007). arXiv:0709.4227 ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • J. L. Albacete
    • 1
    • 2
  • J. G. Milhano
    • 3
    • 4
  • P. Quiroga-Arias
    • 5
    Email author
  • J. Rojo
    • 4
  1. 1.IPNO, Université Paris-SudCNRS/IN2P3OrsayFrance
  2. 2.IPhTCEA/SaclayGif-sur-Yvette cedexFrance
  3. 3.CENTRA, Instituto Superior TécnicoUniversidade Técnica de LisboaLisboaPortugal
  4. 4.Physics Department, Theory UnitCERNGenève 23Switzerland
  5. 5.LPTHEUPMC Univ. Paris 6 and CNRS UMR7589ParisFrance

Personalised recommendations