Advertisement

The European Physical Journal C

, 72:2127 | Cite as

Flavor-diagonal CP violation

  • Brian BatellEmail author
Regular Article - Theoretical Physics
Part of the following topical collections:
  1. Top and flavour physics in the LHC era

Abstract

The focus of this brief review is on new physics (NP) sources of CP violation, especially related to the flavor-diagonal phenomena of electric dipole moments (EDMs) of elementary particles and atoms. Using weak scale supersymmetry as an example, we illustrate various aspects of the “new physics CP-problem”. We also explore the interplay between flavor-changing and flavor-diagonal CP violation in the context of the recent hints from the Tevatron for new sources of CP violation in the B-meson systems.

Keywords

Higgs Boson Minimal Supersymmetric Standard Model Weak Scale Minimal Flavor Violation Constrain Minimal Supersymmetric Standard Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research is supported by the NSF under grant PHY-0756966 and the DOE under grant DE-SC0003930.

References

  1. 1.
    ATLAS Collaboration, Combination of Higgs boson searches with up to 4.9 fb−1 of p p collision data taken at sqrt(s)=7 TeV with the ATLAS experiment at the LHC. ATLAS-CONF-2011-157 Google Scholar
  2. 2.
    CMS Collaboration, Combination of CMS searches for a Standard Model Higgs boson. CMS PAS HIG-11-032 Google Scholar
  3. 3.
    A.D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967) Google Scholar
  4. 4.
    A.D. Sakharov, JETP Lett. 5, 24 (1967) ADSGoogle Scholar
  5. 5.
    A.D. Sakharov, Sov. Phys. Usp. 34, 392 (1991) ADSCrossRefGoogle Scholar
  6. 6.
    A.D. Sakharov, Usp. Fiz. Nauk 161, 61 (1991) Google Scholar
  7. 7.
    M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005). arXiv:hep-ph/0504231 ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    T. Ibrahim, P. Nath, Rev. Mod. Phys. 80, 577–631 (2008). arXiv:0705.2008 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    J.R. Ellis, J.S. Lee, A. Pilaftsis, J. High Energy Phys. 0810, 049 (2008). arXiv:0808.1819 [hep-ph] ADSCrossRefGoogle Scholar
  10. 10.
    C.A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006). arXiv:hep-ex/0602020 ADSCrossRefGoogle Scholar
  11. 11.
    W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel, E.N. Fortson, Phys. Rev. Lett. 102, 101601 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    B.C. Regan, E.D. Commins, C.J. Schmidt, D. DeMille, Phys. Rev. Lett. 88, 071805 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    S.N. Balashov et al., arXiv:0709.2428 [hep-ex]
  14. 14.
    K. Bodek et al., arXiv:0806.4837 [nucl-ex]
  15. 15.
    A.E. Leanhardt et al., arXiv:1008.2997 [atom-ph]
  16. 16.
    A. Adelmann, K. Kirch, C.J.G. Onderwater, T. Schietinger, J. Phys. G 37, 085001 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Feng, K.T. Matchev, Y. Shadmi, Nucl. Phys. B 613, 366 (2001). hep-ph/0107182 ADSCrossRefGoogle Scholar
  18. 18.
    Y.K. Semertzidis et al. (EDM Collaboration), AIP Conf. Proc. 698, 200 (2004). arXiv:hep-ex/0308063 ADSCrossRefGoogle Scholar
  19. 19.
    S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989) ADSCrossRefGoogle Scholar
  20. 20.
    J.S.M. Ginges, V.V. Flambaum, Phys. Rep. 397, 63 (2004). arXiv:physics/0309054 ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Ellis, S. Ferrara, D.V. Nanopoulos, Phys. Lett. B 114, 231 (1982) ADSCrossRefGoogle Scholar
  22. 22.
    W. Buchmuller, D. Wyler, Phys. Lett. B 121, 321 (1983) ADSCrossRefGoogle Scholar
  23. 23.
    J. Polchinski, M.B. Wise, Phys. Lett. B 125, 393 (1983) ADSCrossRefGoogle Scholar
  24. 24.
    F. del Aguila, M.B. Gavela, J.A. Grifols, A. Mendez, Phys. Lett. B 126, 71 (1983) ADSCrossRefGoogle Scholar
  25. 25.
    M. Dugan, B. Grinstein, L.J. Hall, Nucl. Phys. B 255, 413 (1985) ADSCrossRefGoogle Scholar
  26. 26.
    R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440–1443 (1977) ADSCrossRefGoogle Scholar
  27. 27.
    T. Ibrahim, P. Nath, Phys. Lett. B 418, 98–106 (1998). hep-ph/9707409 MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    T. Ibrahim, P. Nath, Phys. Rev. D 57, 478–488 (1998). hep-ph/9708456 ADSCrossRefGoogle Scholar
  29. 29.
    T. Ibrahim, P. Nath, Phys. Rev. D 58, 111301 (1998). hep-ph/9807501 ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Barr, A. Zee, Phys. Rev. Lett. 65, 21–24 (1990) ADSCrossRefGoogle Scholar
  31. 31.
    D. Chang, W.-Y. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900–903 (1999). hep-ph/9811202 ADSCrossRefGoogle Scholar
  32. 32.
    A. Pilaftsis, Phys. Lett. B 471, 174–181 (1999). hep-ph/9909485 ADSCrossRefGoogle Scholar
  33. 33.
    D. Chang, W.-F. Chang, W.-Y. Keung, Phys. Rev. D 66, 116008 (2002). hep-ph/0205084 ADSCrossRefGoogle Scholar
  34. 34.
    O. Lebedev, M. Pospelov, Phys. Rev. Lett. 89, 101801 (2002). hep-ph/0204359 ADSCrossRefGoogle Scholar
  35. 35.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 032001 (2010). arXiv:1005.2757 [hep-ex] ADSCrossRefGoogle Scholar
  36. 36.
    V.M. Abazov et al. (D0 Collaboration), arXiv:1106.6308 [hep-ex]
  37. 37.
    B.A. Dobrescu, P.J. Fox, A. Martin, Phys. Rev. Lett. 105, 041801 (2010). arXiv:1005.4238 [hep-ph] ADSCrossRefGoogle Scholar
  38. 38.
    Z. Ligeti, M. Papucci, G. Perez, J. Zupan, Phys. Rev. Lett. 105, 131601 (2010). arXiv:1006.0432 [hep-ph] ADSCrossRefGoogle Scholar
  39. 39.
    A. Lenz et al., Phys. Rev. D 83, 036004 (2011). arXiv:1008.1593 [hep-ph] ADSCrossRefGoogle Scholar
  40. 40.
    A.L. Kagan, G. Perez, T. Volansky, J. Zupan, Phys. Rev. D 80, 076002 (2009). arXiv:0903.1794 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    B. Batell, M. Pospelov, Phys. Rev. D 82, 054033 (2010). arXiv:1006.2127 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    A.J. Buras, S. Jager, J. Urban, Nucl. Phys. B 605, 600–624 (2001). hep-ph/0102316 ADSCrossRefGoogle Scholar
  43. 43.
    D. Chang, W.-Y. Keung, T.C. Yuan, Phys. Lett. B 251, 608–612 (1990) ADSCrossRefGoogle Scholar
  44. 44.
    S.J. Huber, M. Pospelov, A. Ritz, Phys. Rev. D 75, 036006 (2007). hep-ph/0610003 ADSCrossRefGoogle Scholar
  45. 45.
    J.S.M. Ginges, V.V. Flambaum, Phys. Rep. 397, 63 (2004). arXiv:physics/0309054 ADSCrossRefGoogle Scholar
  46. 46.
    M. Pospelov, Phys. Lett. B 530, 123 (2002). arXiv:hep-ph/0109044 ADSCrossRefGoogle Scholar
  47. 47.
    A.J. Buras, M.V. Carlucci, S. Gori, G. Isidori, J. High Energy Phys. 1010, 009 (2010). arXiv:1005.5310 [hep-ph] ADSCrossRefGoogle Scholar
  48. 48.
    A.J. Buras, G. Isidori, P. Paradisi, Phys. Lett. B 694, 402 (2011). arXiv:1007.5291 [hep-ph] ADSCrossRefGoogle Scholar
  49. 49.
    M. Trott, M.B. Wise, J. High Energy Phys. 1011, 157 (2010). arXiv:1009.2813 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    G. Boyd, A.K. Gupta, S.P. Trivedi, M.B. Wise, Phys. Lett. B 241, 584 (1990) ADSCrossRefGoogle Scholar
  51. 51.
    B. Grinstein, A.L. Kagan, M. Trott, J. Zupan, arXiv:1108.4027 [hep-ph]
  52. 52.
    R. Aaij et al. (LHCb Collaboration), arXiv:1112.3183 [hep-ex]
  53. 53.
    R. Aaij et al. (LHCb Collaboration), arXiv:1112.3056 [hep-ex]
  54. 54.
    CDF Collaboration, Public Note 10206, 2010 Google Scholar
  55. 55.
    D0 Collaboration, Conference Note D0 Note 6098-CONF, 2010 Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Enrico Fermi Institute and Department of PhysicsUniversity of ChicagoChicagoUSA

Personalised recommendations