Advertisement

Phase transitions for Lifshitz black holes

  • Yun Soo MyungEmail author
Regular Article - Theoretical Physics

Abstract

We study the possibility of phase transitions between Lifshitz black holes and other configurations by using free energies explicitly. A phase transition between Lifshitz soliton and Lifshitz black hole might not occur in three dimensions. We find that a phase transition between Lifshitz and BTZ black holes is unlikely to occur because they have different asymptotes. Similarly, we point out that any phase transition between Lifshitz and black branes is unlikely to occur in four dimensions since they have different asymptotes. This is consistent with the necessary condition for taking a phase transition in a gravitational system, which requires the same asymptote.

Keywords

Black Hole Soliton Black Hole Solution Helmholtz Free Energy Black Brane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Javier Tarrio for pointing out correctness of free energy in the Lifshitz brane. This work was supported by the 2012 Inje University research grant.

References

  1. 1.
    K. Balasubramanian, J. McGreevy, Phys. Rev. Lett. 101, 061601 (2008). arXiv:0804.4053 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S. Kachru, X. Liu, M. Mulligan, Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    U.H. Danielsson, L. Thorlacius, J. High Energy Phys. 0903, 070 (2009). arXiv:0812.5088 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    T. Azeyanagi, W. Li, T. Takayanagi, J. High Energy Phys. 0906, 084 (2009). arXiv:0905.0688 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    D.W. Pang, J. High Energy Phys. 0910, 031 (2009). arXiv:0908.1272 [hep-th] ADSCrossRefGoogle Scholar
  6. 6.
    W. Li, T. Nishioka, T. Takayanagi, J. High Energy Phys. 0910, 015 (2009). arXiv:0908.0363 [hep-th] MathSciNetADSGoogle Scholar
  7. 7.
    R.G. Cai, Y. Liu, Y.W. Sun, J. High Energy Phys. 0910, 080 (2009). arXiv:0909.2807 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). Int. J. Theor. Phys. 38, 1113 (1999). arXiv:hep-th/9711200 MathSciNetADSzbMATHGoogle Scholar
  9. 9.
    S.A. Hartnoll, Class. Quantum Gravity 26, 224002 (2009). arXiv:0903.3246 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    D.T. Son, Phys. Rev. D 78, 046003 (2008). arXiv:0804.3972 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    R.B. Mann, J. High Energy Phys. 0906, 075 (2009). arXiv:0905.1136 [hep-th] ADSCrossRefGoogle Scholar
  12. 12.
    K. Balasubramanian, J. McGreevy, Phys. Rev. D 80, 104039 (2009). arXiv:0909.0263 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Taylor, arXiv:0812.0530 [hep-th]
  14. 14.
    J. Matulich, R. Troncoso, J. High Energy Phys. 1110, 118 (2011). arXiv:1107.5568 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    E. Ayon-Beato, A. Garbarz, G. Giribet, M. Hassaine, Phys. Rev. D 80, 104029 (2009). arXiv:0909.1347 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    E.A. Bergshoeff, O. Hohm, P.K. Townsend, Phys. Rev. Lett. 102, 201301 (2009). arXiv:0901.1766 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    G. Bertoldi, B.A. Burrington, A. Peet, Phys. Rev. D 80, 126003 (2009). arXiv:0905.3183 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    G. Bertoldi, B.A. Burrington, A.W. Peet, Phys. Rev. D 80, 126004 (2009). arXiv:0907.4755 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    D.O. Devecioglu, O. Sarioglu, Phys. Rev. D 83, 021503 (2011). arXiv:1010.1711 [hep-th] ADSCrossRefGoogle Scholar
  20. 20.
    D.O. Devecioglu, O. Sarioglu, Phys. Rev. D 83, 124041 (2011). arXiv:1103.1993 [hep-th] ADSCrossRefGoogle Scholar
  21. 21.
    H.A. Gonzalez, D. Tempo, R. Troncoso, J. High Energy Phys. 1111, 066 (2011). arXiv:1107.3647 [hep-th] ADSCrossRefGoogle Scholar
  22. 22.
    O. Hohm, E. Tonni, J. High Energy Phys. 1004, 093 (2010). arXiv:1001.3598 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Y.S. Myung, Y.W. Kim, Y.J. Park, Eur. Phys. J. C 70, 335 (2010). arXiv:0910.4428 [hep-th] ADSCrossRefGoogle Scholar
  24. 24.
    D.J. Gross, M.J. Perry, L.G. Yaffe, Phys. Rev. D 25, 330 (1982) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    J.W. York, Phys. Rev. D 33, 2092 (1986) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    J.D. Brown, J. Creighton, R.B. Mann, Phys. Rev. D 50, 6394 (1994). gr-qc/9405007 MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). hep-th/9803131 MathSciNetzbMATHGoogle Scholar
  29. 29.
    C. Martinez, R. Troncoso, J. Zanelli, Phys. Rev. D 70, 084035 (2004). arXiv:hep-th/0406111 MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    G. Koutsoumbas, S. Musiri, E. Papantonopoulos, G. Siopsis, J. High Energy Phys. 0610, 006 (2006). arXiv:hep-th/0606096 MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Y.S. Myung, Phys. Lett. B 663, 111 (2008). arXiv:0801.2434 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    I. Amado, A.F. Faedo, J. High Energy Phys. 1107, 004 (2011). arXiv:1105.4862 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    J. Tarrio, S. Vandoren, J. High Energy Phys. 1109, 017 (2011). arXiv:1105.6335 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Y.S. Myung, Phys. Lett. B 638, 515 (2006). arXiv:gr-qc/0603051 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992). arXiv:hep-th/9204099 MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 48, 1506 (1993). arXiv:gr-qc/9302012 MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    G.T. Horowitz, R.C. Myers, Phys. Rev. D 59, 026005 (1998). arXiv:hep-th/9808079 MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    S. Surya, K. Schleich, D.M. Witt, Phys. Rev. Lett. 86, 5231 (2001). arXiv:hep-th/0101134 MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Y.S. Myung, Phys. Lett. B 645, 369 (2007). arXiv:hep-th/0603200 MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    D.W. Pang, J. High Energy Phys. 1001, 120 (2010). arXiv:0912.2403 [hep-th] ADSCrossRefGoogle Scholar
  41. 41.
    A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 064018 (1999). hep-th/9902170 MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    C. Martinez, J.P. Staforelli, R. Troncoso, Phys. Rev. D 74, 044028 (2006). arXiv:hep-th/0512022 MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    Y.S. Myung, C. Park, Phys. Lett. B 704, 242 (2011). arXiv:1007.0816 [hep-th] ADSCrossRefGoogle Scholar
  44. 44.
    J. Tarrio, arXiv:1201.5480 [hep-th]
  45. 45.
    Y.S. Myung, Y.-W. Kim, Y.-J. Park, Phys. Rev. D 78, 084002 (2008). arXiv:0805.0187 [gr-qc] MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Institute of Basic Science and School of Computer Aided ScienceInje UniversityGimhaeKorea

Personalised recommendations