Advertisement

Temperature and quark density effects on the chiral condensate: an AdS/QCD study

  • P. Colangelo
  • F. Giannuzzi
  • S. NicotriEmail author
  • V. Tangorra
Regular Article - Theoretical Physics

Abstract

We investigate the dependence of the chiral condensate \(\langle\bar{q}q\rangle\) on the temperature and quark density using the soft-wall holographic model of QCD, adopting geometries with black holes at finite temperature and quark chemical potential μ. We find that, for μ below a critical value, increasing the temperature the condensate decreases and vanishes at a temperature \(\tilde{T}\simeq210~\mathrm{MeV}\) (at μ=0). An analogous behaviour is observed increasing the chemical potential at fixed temperature. These results agree with the findings obtained by other methods. We also comment on the robustness of the results if geometries not involving black holes are adopted at low temperature, and an Hawking–Page transition is implemented.

Keywords

Black Hole Quark Mass Chiral Symmetry Gauge Field Chiral Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank F. De Fazio and F. Jugeau for helpful discussions and collaboration in the early stage of this work. This work is supported in part by the Italian MIUR PRIN 2009.

References

  1. 1.
    M. Shifman, Int. J. Mod. Phys. A 25, 4015 (2010) ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    A. Bazavov, T. Bhattacharya, M. Cheng, N.H. Christ, C. DeTar, S. Ejiri, S. Gottlieb, R. Gupta et al., Phys. Rev. D 80, 014504 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H.T. Ding, S. Gottlieb, R. Gupta, P. Hegde et al., arXiv:1111.1710 [hep-lat] and in references therein
  6. 6.
    Z. Fodor, S.D. Katz, Phys. Lett. B 534, 87 (2002) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    M. D’Elia, M.-P. Lombardo, Phys. Rev. D 67, 014505 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, J. High Energy Phys. 1104, 001 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    O. Philipsen, arXiv:1111.5370 [hep-ph]
  10. 10.
    P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    V. Koch, nucl-th/9512029
  12. 12.
    M. Buballa, Phys. Rep. 407, 205 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    D. Muller, M. Buballa, J. Wambach, Phys. Rev. D 81, 094022 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)] MathSciNetADSzbMATHGoogle Scholar
  15. 15.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) MathSciNetADSzbMATHGoogle Scholar
  17. 17.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    O. Andreev, Phys. Rev. D 73, 107901 (2006) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers, R.M. Thomson, J. High Energy Phys. 0702, 016 (2007) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    I. Iatrakis, E. Kiritsis, A. Paredes, J. High Energy Phys. 1011, 123 (2010) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78, 055009 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    O. Andreev, V.I. Zakharov, Phys. Rev. D 74, 025023 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005) ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    J. Hirn, V. Sanz, J. High Energy Phys. 0512, 030 (2005) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P. Colangelo, F. De Fazio, J.J. Sanz-Cillero, F. Giannuzzi, S. Nicotri, Phys. Rev. D 85, 035013 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    S.K. Domokos, J.A. Harvey, A.B. Royston, J. High Energy Phys. 1105, 107 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    R. Alvares, C. Hoyos, A. Karch, Phys. Rev. D 84, 095020 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    I.R. Klebanov, E. Witten, Nucl. Phys. B 556, 89 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 31.
    A. Cherman, T.D. Cohen, E.S. Werbos, Phys. Rev. C 79, 045203 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    K. Ghoroku, M. Yahiro, Phys. Rev. D 73, 125010 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Kim, B.-H. Lee, S. Nam, C. Park, S.-J. Sin, Phys. Rev. D 76, 086003 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    T. Gherghetta, J.I. Kapusta, T.M. Kelley, Phys. Rev. D 79, 076003 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    S.S. Afonin, Phys. Rev. C 83, 048202 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    C.A. Dominguez, M. Loewe, J.C. Rojas, J. High Energy Phys. 0708, 040 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    M. Blank, A. Krassnigg, Phys. Rev. D 82, 034006 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, Phys. Rev. D 58, 096007 (1998) ADSCrossRefGoogle Scholar
  39. 39.
    D. Huang, Y.-L. Wu, arXiv:1110.4491 [hep-ph]
  40. 40.
    S. Borsanyi et al. (Wuppertal–Budapest Collaboration), J. High Energy Phys. 1009, 073 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    C.P. Herzog, Phys. Rev. Lett. 98, 091601 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    O. Andreev, V.I. Zakharov, Phys. Lett. B 645, 437 (2007) MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    M. Fujita, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 80, 035001 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 80, 094019 (2009) ADSCrossRefGoogle Scholar
  45. 45.
    P. Colangelo, F. Giannuzzi, S. Nicotri, J. High Energy Phys. 1205, 076 (2012) ADSCrossRefGoogle Scholar
  46. 46.
    M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 81, 065024 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 83, 035015 (2011) ADSCrossRefGoogle Scholar
  48. 48.
    K. Jo, B.-H. Lee, C. Park, S.-J. Sin, J. High Energy Phys. 1006, 022 (2010) ADSCrossRefGoogle Scholar
  49. 49.
    B.-H. Lee, C. Park, S.-J. Sin, J. High Energy Phys. 0907, 087 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    A. Barducci, R. Casalbuoni, G. Pettini, R. Gatto, Phys. Rev. D 49, 426 (1994) ADSCrossRefGoogle Scholar
  51. 51.
    S.-J. Sin, J. High Energy Phys. 0710, 078 (2007) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • P. Colangelo
    • 1
  • F. Giannuzzi
    • 1
    • 2
  • S. Nicotri
    • 1
    • 2
    Email author
  • V. Tangorra
    • 2
  1. 1.Istituto Nazionale di Fisica Nucleare, Sezione di BariBariItaly
  2. 2.Dipartimento di FisicaUniversità degli Studi di BariBariItaly

Personalised recommendations