Advertisement

Quantum singularities in a model of f(R) gravity

  • O. GurtugEmail author
  • T. Tahamtan
Regular Article - Theoretical Physics

Abstract

The formation of a naked singularity in a model of f(R) gravity having as source a linear electromagnetic field is considered in view of quantum mechanics. Quantum test fields obeying the Klein–Gordon, Dirac and Maxwell equations are used to probe the classical timelike naked singularity developed at r=0. We prove that the spatial derivative operator of the fields fails to be essentially self-adjoint. As a result, the classical timelike naked singularity remains quantum mechanically singular when it is probed with quantum fields having different spin structures.

Keywords

Black Hole Solution Naked Singularity Maxwell Field Deficiency Index Quantum Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    T. Clifton, J.D. Barrow, Phys. Rev. D 72, 103005 (2005) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    T. Multamaki, I. Vilja, Phys. Rev. D 76, 064021 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Seifert, Phys. Rev. D 76, 064002 (2007) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    L. Hollenstein, F.S.N. Lobo, Phys. Rev. D 78, 124007 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    A. de la Cruz-Dombriz, A. Dobado, A.L. Maroto, Phys. Rev. D 80, 124011 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    S. Habib Mazharimousavi, M. Halilsoy, T. Tahamtan, Eur. Phys. J. C 72, 1851 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989) ADSCrossRefGoogle Scholar
  9. 9.
    P.S. Letelier, Phys. Rev. D 20, 1294 (1979) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    R.M. Wald, J. Math. Phys. (N.Y.) 21, 2082 (1980) Google Scholar
  12. 12.
    G.T. Horowitz, D. Marolf, Phys. Rev. D 52, 5670 (1995) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    A. Ishibashi, A. Hosoya, Phys. Rev. D 60, 104028 (1999) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    D.A. Konkowski, T.M. Helliwell, Gen. Relativ. Gravit. 33, 1131 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    T.M. Helliwell, D.A. Konkowski, V. Arndt, Gen. Relativ. Gravit. 35, 79 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    D.A. Konkowski, T.M. Helliwell, C. Wieland, Class. Quantum Gravity 21, 265 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    D.A. Konkowski, C. Reese, T.M. Helliwell, C. Wieland, Classical and quantum singularities of Levi-Civita spacetimes with and without a cosmological constant, in Proceedings of the Workshop on the Dynamics and Thermodynamics of Black Holes and Naked Singularities, ed. by L. Fatibene, M. Francaviglia, R. Giambo, G. Megli (2004) Google Scholar
  18. 18.
    D.A. Konkowski, T.M. Helliwell, Int. J. Mod. Phys. A 26(22), 3878–3888 (2011) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J.P.M. Pitelli, P.S. Letelier, J. Math. Phys. 48, 092501 (2007) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J.P.M. Pitelli, P.S. Letelier, Phys. Rev. D 77, 124030 (2008) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    J.P.M. Pitelli, P.S. Letelier, Phys. Rev. D 80, 104035 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    P.S. Letelier, J.P.M. Pitelli, Phys. Rev. D 82, 104046 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    O. Unver, O. Gurtug, Phys. Rev. D 82, 084016 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    S. Habib Mazharimousavi, O. Gurtug, M. Halilsoy, Int. J. Mod. Phys. D 18, 2061–2082 (2009) ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    S. Habib Mazharimousavi, M. Halilsoy, I. Sakalli, O. Gurtug, Class. Quantum Gravity 27, 105005 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    S. Habib Mazharimousavi, O. Gurtug, M. Halilsoy, O. Unver, Phys. Rev. D 84, 124021 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    M. Reed, B. Simon, Functional Analysis (Academic Press, New York, 1980) zbMATHGoogle Scholar
  28. 28.
    M. Reed, B. Simon, Fourier Analysis and Self-adjointness (Academic Press, New York, 1975) Google Scholar
  29. 29.
    R.D. Richtmyer, Principles of Advanced Mathematical Physics (Springer, New York, 1978) zbMATHCrossRefGoogle Scholar
  30. 30.
    S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, London, 1992) Google Scholar
  31. 31.
    I. Seggev, Class. Quantum Gravity 21, 2651 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsEastern Mediterranean UniversityMersin 10Turkey

Personalised recommendations