Advertisement

Revisit emission spectrum and entropy quantum of the Reissner–Nordström black hole

  • Qing-Quan JiangEmail author
Regular Article - Theoretical Physics

Abstract

Banerjee and Majhi’s recent work shows that black hole’s emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outside the horizon. Some attempt, as an extension, was focused on producing the Hawking emission spectrum of the (charged) Reissner–Nordström black hole in the Banerjee–Majhi treatment. Unfortunately, the Kruskal extension in their observation was so badly defined that the ingoing mode was classically forbidden traveling towards the center of black hole, but could quantum tunnel across the horizon with the probability \(\varGamma=\mathrm{e}^{-\pi\omega_{0}/\kappa_{+}}\). This tunneling picture is unphysical. With this point as a central motivation, in this paper we first introduce such a suitable Kruskal extension for the (charged) Reissner–Nordström black hole that a perfect tunneling picture can be provided during the charged particle’s emission. Then, under the new Kruskal extension, we revisit the Hawking emission spectrum and entropy spectroscopy as tunneling from the charged black hole. The result shows that the tunneling method is so universally robust that the Hawking blackbody emission spectrum from a charged black hole can be well reproduced in the tunneling mechanism, and its induced entropy quantum is a much better approximation for the forthcoming quantum gravity theory.

Keywords

Black Hole Charged Black Hole Tunneling Mechanism Black Hole Physic Entropy Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China with Grant No. 11005086, and by the Sichuan Youth Science and Technology Foundation with Grant No. 2011JQ0019, and by a starting fund of China West Normal University with Grant No. 10B016.

References

  1. 1.
    R. Zhao, L.C. Zhang, H.F. Li, Commun. Theor. Phys. 53, 499 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    P. Kraus, F. Wilczek, Nucl. Phys. B 433, 403 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    P. Kraus, F. Wilczek, Nucl. Phys. B 437, 231 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M.K. Parikh, Int. J. Mod. Phys. D 13, 2351 (2004) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M.K. Parikh, Gen. Relativ. Gravit. 36, 2419 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Shankaranarayanan, K. Srinivasan, T. Padmanabhan, Mod. Phys. Lett. A 16, 571 (2001) MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Shankaranarayanan, T. Padmanabhan, K. Srinivasan, Class. Quantum Gravity 19, 2671 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    S. Hemming, E. Keski-Vakkuri, Phys. Rev. D 64, 044006 (2001) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A.J.M. Medved, Phys. Rev. D 66, 124009 (2002) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A.J.M. Medved, Class. Quantum Gravity 19, 589 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    E.C. Vagenas, Phys. Lett. B 503, 399 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    E.C. Vagenas, Phys. Lett. B 559, 65 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    E.C. Vagenas, Mod. Phys. Lett. A 17, 609 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    A.J.M. Medved, E.C. Vagenas, Mod. Phys. Lett. A 20, 1723 (2005) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    A.J.M. Medved, E.C. Vagenas, Mod. Phys. Lett. A 20, 2449 (2005) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    M. Arzano, A.J.M. Medved, E.C. Vagenas, J. High Energy Phys. 0509, 037 (2005) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J.Y. Zhang, Z. Zhao, Phys. Lett. B 618, 14 (2005) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    J.Y. Zhang, Z. Zhao, J. High Energy Phys. 0505, 055 (2005) CrossRefGoogle Scholar
  21. 21.
    Y.P. Hu, J.J. Zhang, Z. Zhao, Mod. Phys. Lett. A 21, 2143 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    C.Z. Liu, J.Y. Zhang, Z. Zhao, Phys. Lett. B 639, 670 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    W.B. Liu, Phys. Lett. B 634, 541 (2006) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Q.Q. Jiang, S.Q. Wu, Phys. Lett. B 635, 151 (2006) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Q.Q. Jiang, S.Q. Wu, X. Cai, Phys. Rev. D 73, 064003 (2006) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    S.Q. Wu, Q.Q. Jiang, J. High Energy Phys. 0603, 079 (2006) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Hawking radiation of charged particles as tunneling from higher dimensional Reissner–Nordstrom–de Sitter black holes. arXiv:hep-th/0603082
  28. 28.
    L. Zhao, Tunnelling through black rings. arXiv:hep-th/0602065
  29. 29.
    S.P. Kim, J. High Energy Phys. 0711, 048 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    S. Sarkar, D. Kothawala, Phys. Lett. B 659, 683 (2008) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    T. Pilling, Phys. Lett. B 660, 402 (2008) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    M.H. Ali, Class. Quantum Gravity 24, 5849 (2007) ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    P. Mitra, Phys. Lett. B 648, 240 (2007) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Z.Z. Ma, Phys. Lett. B 666, 376 (2008) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    B.C. Zhang, Q.Y. Cai, M.S. Zhan, Phys. Lett. B 665, 260 (2008) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    C.K. Ding, J.L. Jing, Class. Quantum Gravity 25, 145015 (2008) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Y. Sekiwa, Decay of the cosmological constant by Hawking radiation as quantum tunneling. arXiv:0802.3266 [hep-th]
  38. 38.
    R. Kerner, R.B. Mann, Phys. Rev. D 73, 104010 (2006) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    R. Kerner, R.B. Mann, Phys. Rev. D 75, 084022 (2007) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    R. Kerner, R.B. Mann, Class. Quantum Gravity 25, 095014 (2008) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    R. Kerner, R.B. Mann, Phys. Lett. B 665, 277 (2008) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    A. Alexandre, R.B. Mann, Phys. Lett. B 673, 168 (2009) MathSciNetCrossRefGoogle Scholar
  43. 43.
    R. Li, J.R. Ren, Phys. Lett. B 661, 370 (2008) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    R. Li, J.R. Ren, S.W. Wei, Class. Quantum Gravity 25, 125016 (2008) MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    R.Di. Criscienzo, L. Vanzo, Europhys. Lett. 82, 60001 (2008) CrossRefGoogle Scholar
  46. 46.
    D.Y. Chen, Q.Q. Jiang, X.T. Zu, Phys. Lett. B 665, 106 (2008) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    D.Y. Chen, Q.Q. Jiang, X.T. Zu, Class. Quantum Gravity 25, 205022 (2008) MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Q.Q. Jiang, Phys. Rev. D 78, 044009 (2008) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Q.Q. Jiang, Phys. Lett. B 666, 517 (2008) MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    R. Banerjee, B.R. Majhi, J. High Energy Phys. 0806, 095 (2008) MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    B.R. Majhi, Phys. Rev. D 79, 044005 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    J.Y. Zhang, Phys. Lett. B 668, 353 (2008) MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    R. Banerjee, B.R. Majhi, Phys. Lett. B 675, 243 (2009) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010) ADSCrossRefGoogle Scholar
  55. 55.
    R. Banerjee, S.K. Modak, J. High Energy Phys. 0911, 073 (2009) MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    B.R. Majhi, Phys. Lett. B 686, 49 (2010) MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Q.Q. Jiang, Y. Han, X. Cai, J. High Energy Phys. 1008, 049 (2010) MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Q.Q. Jiang, X. Cai, J. High Energy Phys. 1011, 066 (2010) MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    S. Hod, Phys. Rev. D 59, 024014 (1999) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.College of Physics and Electronic InformationChina West Normal UniversityNanchongPeople’s Republic of China

Personalised recommendations