Advertisement

Non-vanishing U e3 under S 3 symmetry

  • Kim SiyeonEmail author
Regular Article - Theoretical Physics

Abstract

This work proposes two models of neutrino masses that predict non-zero θ 13 under the non-Abelian discrete flavor symmetry \(\mathbb{S}_{3}\otimes\mathbb{Z}_{2}\). We advocate that the size of θ 13 is understood as a group theoretical consequence rather than a perturbed effect from the tri-bi-maximal mixing. So, the difference of two models is designed only in terms of the flavor symmetry, by changing the charge assignment of right-handed neutrinos. The PMNS matrix in the first model is obtained from both mass matrices, charged leptons giving rise to non-zero \(\theta^{l}_{13}\) and neutrino masses giving rise to tri-bi-maximal mixing. The physical mixing angles are expressed by a simple relation between \(\theta^{l}_{13}\) and tri-bi-maximal angles to fit the recent experimental results. The other model generates PMNS matrix with non-zero θ 13, only from the neutrino mass transformation. The 5-dimensional effective theory of Majorana neutrinos obtained in this framework is tested with phenomenological bounds in the parametric spaces sinθ 23,sinθ 12 and m 2/m 3 vs. sinθ 13.

Keywords

Yukawa Coupling Charged Lepton Neutrino Mass Matrix Majorana Masse Higgs Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Basic Science Research program through NRF (2011-0014686).

References

  1. 1.
    K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett. 107, 181802 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    Y. Abe et al. (DOUBLE-CHOOZ Collaboration), Phys. Rev. Lett. 108, 131801 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    F.P. An et al. (DAYA-BAY Collaboration), Phys. Rev. Lett. 108, 171803 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    J.K. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rep. 460, 1 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    P.F. Harrison, D.H. Perkins, W.G. Scott, Phys. Lett. B 530, 167 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    P.F. Harrison, W.G. Scott, Phys. Lett. B 557, 76 (2003) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    A. Zee, Phys. Lett. B 630, 58 (2005) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    E. Ma, Phys. Rev. D 72, 037301 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    K.S. Babu, X.G. He, arXiv:hep-ph/0507217
  13. 13.
    E. Ma, Mod. Phys. Lett. A 20, 2601 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    G. Altarelli, F. Feruglio, Nucl. Phys. B 741, 215 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    X.G. He, Y.Y. Keum, R.R. Volkas, J. High Energy Phys. 0604, 039 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    X.G. He, A. Zee, Phys. Lett. B 645, 427 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    R.R. Volkas, arXiv:hep-ph/0612296
  18. 18.
    F. Feruglio, C. Hagedorn, Y. Lin, L. Merlo, Nucl. Phys. B 775, 120 (2007) [Erratum-ibid. 836, 127 (2010)] ADSCrossRefGoogle Scholar
  19. 19.
    W. Grimus, L. Lavoura, P.O. Ludl, J. Phys. G 36, 115007 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    T. Araki, J. Mei, Z.z. Xing, Phys. Lett. B 695, 165 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    N. Haba, A. Watanabe, K. Yoshioka, Phys. Rev. Lett. 97, 041601 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    C.S. Lam, Phys. Rev. Lett. 101, 121602 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    C. Hagedorn, M. Lindner, R.N. Mohapatra, J. High Energy Phys. 0606, 042 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    H. Zhang, Phys. Lett. B 655, 132 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    F. Bazzocchi, L. Merlo, S. Morisi, Nucl. Phys. B 816, 204 (2009) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    F. Bazzocchi, L. Merlo, S. Morisi, Phys. Rev. D 80, 053003 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    R.Z. Yang, H. Zhang, Phys. Lett. B 700, 316 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    S. Morisi, E. Peinado, Phys. Lett. B 701, 451 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    N.W. Park, K.H. Nam, K. Siyeon, Phys. Rev. D 83, 056013 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    S. Morisi, K.M. Patel, E. Peinado, Phys. Rev. D 84, 053002 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    D. Meloni, S. Morisi, E. Peinado, J. Phys. G 38, 015003 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    P.V. Dong, H.N. Long, C.H. Nam, V.V. Vien, Phys. Rev. D 85, 053001 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    X. Chu, M. Dhen, T. Hambye, J. High Energy Phys. 1111, 106 (2011) ADSCrossRefGoogle Scholar
  34. 34.
  35. 35.
    S.L. Chen, M. Frigerio, E. Ma, Phys. Rev. D 70, 073008 (2004) [Erratum-ibid. D 70, 079905 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsChung-Ang UniversitySeoulSouth Korea

Personalised recommendations