Advertisement

Holographic Λ(t)CDM model in a non-flat universe

  • Jing-Fei Zhang
  • Yang-Yang Li
  • Ying Liu
  • Sheng Zou
  • Xin ZhangEmail author
Regular Article - Theoretical Physics

Abstract

The holographic Λ(t)CDM model in a non-flat universe is studied in this paper. In this model, to keep the form of the stress-energy of the vacuum required by general covariance, the holographic vacuum is enforced to exchange energy with dark matter. It is demonstrated that for the holographic model the best choice for the IR cutoff of the effective quantum field theory is the event horizon size of the universe. We derive the evolution equations of the holographic Λ(t)CDM model in a non-flat universe. We constrain the model by using the current observational data, including the 557 Union2 type Ia supernovae data, the cosmic microwave background anisotropy data from the 7-yr WMAP, and the baryon acoustic oscillation data from the SDSS. Our fit results show that the holographic Λ(t)CDM model tends to favor a spatially closed universe (the best-fit value of Ω k0 is −0.042), and the 95 % confidence level range for the spatial curvature is −0.101<Ω k0<0.040. We show that the interaction between the holographic vacuum and dark matter induces an energy flow of which the direction is first from vacuum to dark matter and then from dark matter to vacuum. Thus, the holographic Λ(t)CDM model is just a time-varying vacuum energy scenario in which the interaction between vacuum and dark matter changes sign during the expansion of the universe.

Keywords

Dark Matter Dark Energy Event Horizon Vacuum Energy Dark Energy Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 10705041, 10975032, 11047112 and 11175042, and by the National Ministry of Education of China under Grant Nos. NCET-09-0276, N100505001, N090305003, and N110405011.

References

  1. 1.
    P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    J. Frieman, M. Turner, D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    M. Li, X.D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, arXiv:1205.3421
  6. 6.
    A. Einstein, Sitz.ber. Preuss. Akad. Wiss. Berl. Math. Phys. Kl. 1917, 142 (1917) Google Scholar
  7. 7.
    E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000) ADSGoogle Scholar
  10. 10.
    S.M. Carroll, Living Rev. Relativ. 4, 1 (2001) ADSGoogle Scholar
  11. 11.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Li, Phys. Lett. B 603, 1 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    G. ’t Hooft, arXiv:gr-qc/9310026
  14. 14.
    L. Susskind, J. Math. Phys. 36, 6377 (1995) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    X. Zhang, Phys. Lett. B 648, 1 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhang, Phys. Rev. D 74, 103505 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhang, X. Zhang, H. Liu, Phys. Lett. B 651, 84 (2007) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Y.Z. Ma, X. Zhang, Phys. Lett. B 661, 239 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    M. Ozer, M.O. Taha, Phys. Lett. B 171, 363 (1986) ADSCrossRefGoogle Scholar
  21. 21.
    M. Ozer, M.O. Taha, Nucl. Phys. B 287, 776 (1987) ADSCrossRefGoogle Scholar
  22. 22.
    O. Bertolami, Nuovo Cimento B 93, 36 (1986) ADSCrossRefGoogle Scholar
  23. 23.
    K. Freese, F.C. Adams, J.A. Frieman, E. Mottola, Nucl. Phys. B 287, 797 (1987) ADSCrossRefGoogle Scholar
  24. 24.
    P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988) ADSCrossRefGoogle Scholar
  25. 25.
    M.S. Berman, Phys. Rev. D 43, 1075 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    P. Wang, X.H. Meng, Class. Quantum Gravity 22, 283 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    H.A. Borges, S. Carneiro, Gen. Relativ. Gravit. 37, 1385 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    S. Carneiro, M.A. Dantas, C. Pigozzo, J.S. Alcaniz, Phys. Rev. D 77, 083504 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    S. Basilakos, M. Plionis, J. Sola, Phys. Rev. D 80, 083511 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 0408, 013 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 0503, 001 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005) ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    J. Zhang, X. Zhang, H. Liu, Eur. Phys. J. C 52, 693 (2007) ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Y.G. Gong, Phys. Rev. D 70, 064029 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 611, 21 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    X. Wu, R.G. Cai, Z.H. Zhu, Phys. Rev. D 77, 043502 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    B. Chen, M. Li, Y. Wang, Nucl. Phys. B 774, 256 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    J. Zhang, H. Liu, X. Zhang, Phys. Lett. B 659, 26 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    M. Li, C. Lin, Y. Wang, J. Cosmol. Astropart. Phys. 0805, 023 (2008) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    M. Li, X.D. Li, C. Lin, Y. Wang, Commun. Theor. Phys. 51, 181 (2009) ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 38, 1285 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. 42.
    X. Zhang, Phys. Lett. B 683, 81 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    X. Zhang, F.Q. Wu, Phys. Rev. D 72, 043524 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    X. Zhang, F.Q. Wu, Phys. Rev. D 76, 023502 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    Q.G. Huang, Y.G. Gong, J. Cosmol. Astropart. Phys. 0408, 006 (2004) ADSCrossRefGoogle Scholar
  46. 46.
    Z. Chang, F.Q. Wu, X. Zhang, Phys. Lett. B 633, 14 (2006) ADSCrossRefGoogle Scholar
  47. 47.
    J.Y. Shen, B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 609, 200 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    Z.L. Yi, T.J. Zhang, Mod. Phys. Lett. A 22, 41 (2007) ADSCrossRefGoogle Scholar
  49. 49.
    Y.Z. Ma, Y. Gong, X. Chen, Eur. Phys. J. C 60, 303 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    M. Li, X.D. Li, S. Wang, Y. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0912, 014 (2009) ADSCrossRefGoogle Scholar
  51. 51.
    Z. Zhang, S. Li, X.D. Li, X. Zhang, M. Li, arXiv:1204.6135 [astro-ph.CO]
  52. 52.
    R.G. Cai, Phys. Lett. B 657, 228 (2007) MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008) ADSCrossRefGoogle Scholar
  54. 54.
    J. Zhang, X. Zhang, H. Liu, Eur. Phys. J. C 54, 303 (2008) ADSCrossRefGoogle Scholar
  55. 55.
    X.L. Liu, J. Zhang, X. Zhang, Phys. Lett. B 689, 139 (2010) ADSCrossRefGoogle Scholar
  56. 56.
    Y.H. Li, J.F. Zhang, X. Zhang, arXiv:1201.5446 [gr-qc]
  57. 57.
    C. Gao, F.Q. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009) ADSCrossRefGoogle Scholar
  58. 58.
    X. Zhang, Phys. Rev. D 79, 103509 (2009) ADSCrossRefGoogle Scholar
  59. 59.
    C.J. Feng, X. Zhang, Phys. Lett. B 680, 399 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    R.G. Cai, B. Hu, Y. Zhang, Commun. Theor. Phys. 51, 954 (2009) ADSzbMATHCrossRefGoogle Scholar
  61. 61.
    J. Zhang, L. Zhang, X. Zhang, Phys. Lett. B 691, 11 (2010) ADSCrossRefGoogle Scholar
  62. 62.
    Q.G. Huang, F.L. Lin, arXiv:1201.2443 [hep-th]
  63. 63.
    M. Li, X.D. Li, S. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0906, 036 (2009) MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    M. Li, X.D. Li, X. Zhang, Sci. China Phys. Mech. Astron. 53, 1631 (2010) ADSCrossRefGoogle Scholar
  65. 65.
    Y. Chen, Z.H. Zhu, L. Xu, J.S. Alcaniz, Phys. Lett. B 698, 175 (2011) ADSCrossRefGoogle Scholar
  66. 66.
    Z.X. Zhai, T.J. Zhang, W.B. Liu, J. Cosmol. Astropart. Phys. 1108, 019 (2011) ADSCrossRefGoogle Scholar
  67. 67.
    R. Amanullah et al., Astrophys. J. 716, 712 (2010) ADSCrossRefGoogle Scholar
  68. 68.
    S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005) ADSCrossRefGoogle Scholar
  69. 69.
    L. Perivolaropoulos, Phys. Rev. D 71, 063503 (2005) ADSCrossRefGoogle Scholar
  70. 70.
    S. Nesseris, L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0702, 025 (2007) MathSciNetADSCrossRefGoogle Scholar
  71. 71.
    Y. Wang, P. Mukherjee, Astrophys. J. 650, 1 (2006) ADSCrossRefGoogle Scholar
  72. 72.
    J.R. Bond, G. Efstathiou, M. Tegmark, Mon. Not. R. Astron. Soc. 291, L33 (1997) ADSGoogle Scholar
  73. 73.
    M. Tegmark et al. (SDSS Collaboration), Astrophys. J. 606, 702 (2004) ADSCrossRefGoogle Scholar
  74. 74.
    M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 74, 123507 (2006) ADSCrossRefGoogle Scholar
  75. 75.
    D.J. Eisenstein et al. (SDSS Collaboration), Astrophys. J. 633, 560 (2005) ADSCrossRefGoogle Scholar
  76. 76.
    Y.H. Li, X. Zhang, Eur. Phys. J. C 71, 1700 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • Jing-Fei Zhang
    • 1
  • Yang-Yang Li
    • 1
  • Ying Liu
    • 1
  • Sheng Zou
    • 1
  • Xin Zhang
    • 1
    • 2
    Email author
  1. 1.Department of Physics, College of SciencesNortheastern UniversityShenyangChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations