Advertisement

Solvable k-essence cosmologies and modified Chaplygin gas unified models of dark energy and dark matter

  • M. SharifEmail author
  • K. Yesmakhanova
  • S. Rani
  • R. Myrzakulov
Regular Article - Theoretical Physics

Abstract

This paper is devoted to the investigation of the modified Chaplygin gas model in the context of solvable k-essence cosmologies. For this purpose, we construct equations of state parameter of this model for some particular values of the parameter n. The graphical behavior of these equations are also discussed by using power law form of scalar field. The relationship between k-essence and the modified Chaplygin gas model shows viable results in the dark energy scenario. We conclude that the universe behaves as a cosmological constant, quintessence phase or phantom phase depending upon n.

Keywords

Dark Matter Dark Energy Cosmological Constant Dark Energy Model Quintessence Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Yadav, Astrophys. Space Sci. 335, 565 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    P.B. Khatua, S. Chakraborty, U. Debnath, arXiv:1105.3393
  5. 5.
    M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    S. Matarrese et al., Dark Matter and Dark Energy (Springer, Berlin, 2010) Google Scholar
  7. 7.
    V. Mukhanov, C. Armendariz-Picon, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2010) Google Scholar
  8. 8.
    F. Piazza, S. Tsujikawa, J. Cosmol. Astropart. Phys. 07, 004 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    K.K. Yerzhanov et al., arXiv:1012.3031
  10. 10.
    O. Razina et al., Eur. Phys. J. Plus 85, 126 (2011) Google Scholar
  11. 11.
    P. Tsyba et al., arXiv:1103.5918
  12. 12.
    R. Myrzakulov, arXiv:1011.4337
  13. 13.
    M. Jamil et al., Astrophys. Space Sci. 336, 325 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    R. Scherrer, Phys. Rev. Lett. 93, 011301 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    R. De Putter, E.V. Linder, Astropart. Phys. 28, 263 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    H.B. Benaoum, arXiv:hep-th/0205140v1
  18. 18.
    M. Jamil, I. Hussain, D. Momeni, Eur. Phys. J. Plus 126, 80 (2011) CrossRefGoogle Scholar
  19. 19.
    M. Jamil, F. Rahaman, M. Kalam, Eur. Phys. J. C 60, 149 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    Sh.R. Myrzakul, K.R. Esmakhanova, K.R. Myrzakulov, G.N. Nugmanova, R. Myrzakulov, arXiv:1105.2771

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • M. Sharif
    • 1
    Email author
  • K. Yesmakhanova
    • 2
  • S. Rani
    • 1
  • R. Myrzakulov
    • 2
  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.Eurasian International Center for Theoretical PhysicsEurasian National UniversityAstanaKazakhstan

Personalised recommendations