Advertisement

On stability of the electroweak vacuum and the Higgs portal

  • Oleg LebedevEmail author
Regular Article - Theoretical Physics

Abstract

In the Standard Model (SM), the Higgs mass around 125 GeV implies that the electroweak vacuum is metastable since the quartic Higgs coupling turns negative at high energies. I point out that a tiny mixing of the Higgs with a heavy singlet can make the electroweak vacuum completely stable. This is due to a tree level correction to the Higgs mass-coupling relation, which survives in the zero-mixing/heavy-singlet limit. Such a situation is experimentally indistinguishable from the SM, unless the Higgs self-coupling can be measured. As a result, Higgs inflation and its variants can still be viable.

Keywords

Dark Matter Higgs Boson Higgs Mass Vacuum Expectation Value Quartic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The author is grateful to H.M. Lee for useful comments.

References

  1. 1.
    V. Silveira, A. Zee, Phys. Lett. B 161, 136 (1985) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272, 67 (1991) ADSCrossRefGoogle Scholar
  3. 3.
    S. Kanemura, S. Matsumoto, T. Nabeshima, N. Okada, Phys. Rev. D 82, 055026 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    O. Lebedev, H.M. Lee, Y. Mambrini, Phys. Lett. B 707, 570 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    F.L. Bezrukov, M. Shaposhnikov, Phys. Lett. B 659, 703 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    R. Schabinger, J.D. Wells, Phys. Rev. D 72, 093007 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    B. Patt, F. Wilczek, arXiv:hep-ph/0605188
  8. 8.
    J. McDonald, Phys. Rev. D 50, 3637–3649 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    C.P. Burgess, M. Pospelov, T. ter Veldhuis, Nucl. Phys. B 619, 709–728 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf, G. Shaughnessy, Phys. Rev. D 77, 035005 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    C. Englert, T. Plehn, D. Zerwas, P.M. Zerwas, Phys. Lett. B 703, 298 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    C. Englert, T. Plehn, M. Rauch, D. Zerwas, P.M. Zerwas, Phys. Lett. B 707, 512 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia, arXiv:1112.3022 [hep-ph]
  14. 14.
    J.R. Espinosa, G.F. Giudice, A. Riotto, J. Cosmol. Astropart. Phys. 0805, 002 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    ATLAS Collaboration, arXiv:1202.1408 [hep-ex]
  16. 16.
    S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1488 [hep-ex]
  17. 17.
    O. Lebedev, H.M. Lee, Eur. Phys. J. C 71, 1821 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    M. Bowen, Y. Cui, J.D. Wells, J. High Energy Phys. 0703, 036 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    I. Low, P. Schwaller, G. Shaughnessy, C.E.M. Wagner, Phys. Rev. D 85, 015009 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    B. Batell, S. Gori, L.-T. Wang, arXiv:1112.5180 [hep-ph]
  21. 21.
    A. Djouadi, O. Lebedev, Y. Mambrini, J. Quevillon, arXiv:1112.3299 [hep-ph]
  22. 22.
    X.-G. He, B. Ren, J. Tandean, arXiv:1112.6364 [hep-ph]
  23. 23.
    J.F. Kamenik, C. Smith, arXiv:1201.4814 [hep-ph]
  24. 24.
    Y. Mambrini, Phys. Rev. D 84, 115017 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    S. Andreas, T. Hambye, M.H.G. Tytgat, J. Cosmol. Astropart. Phys. 0810, 034 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    G.J. Gounaris, D. Schildknecht, F.M. Renard, Phys. Lett. B 83, 191 (1979) ADSCrossRefGoogle Scholar
  27. 27.
    V.D. Barger, T. Han, R.J.N. Phillips, Phys. Rev. D 38, 2766 (1988) ADSCrossRefGoogle Scholar
  28. 28.
    A. Djouadi, W. Kilian, M. Muhlleitner, P.M. Zerwas, Eur. Phys. J. C 10, 27 (1999) ADSGoogle Scholar
  29. 29.
    U. Baur, T. Plehn, D.L. Rainwater, Phys. Rev. D 69, 053004 (2004) ADSCrossRefGoogle Scholar
  30. 30.
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee, A. Strumia, arXiv:1203.0237 [hep-ph]
  31. 31.
    R.N. Lerner, J. McDonald, Phys. Rev. D 80, 123507 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    U. Langenfeld, S.O. Moch, P. Uwer, arXiv:1006.0097
  33. 33.
    M. Holthausen, K.S. Lim, M. Lindner, J. High Energy Phys. 1202, 037 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    M. Gonderinger, Y. Li, H. Patel, M.J. Ramsey-Musolf, J. High Energy Phys. 1001, 053 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, arXiv:1112.3647 [hep-ph]
  36. 36.
    C.S. Chen, Y. Tang, arXiv:1202.5717 [hep-ph]
  37. 37.
    F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, J. High Energy Phys. 1101, 016 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    T.E. Clark, B. Liu, S.T. Love, T. ter Veldhuis, Phys. Rev. D 80, 075019 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    F.L. Bezrukov, A. Magnin, M. Shaposhnikov, Phys. Lett. B 675, 88 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    F. Bezrukov, M. Shaposhnikov, J. High Energy Phys. 0907, 089 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    A. De Simone, M.P. Hertzberg, F. Wilczek, Phys. Lett. B 678, 1 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    A.O. Barvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky, C.F. Steinwachs, arXiv:0910.1041 [hep-ph]
  43. 43.
    C.P. Burgess, H.M. Lee, M. Trott, J. High Energy Phys. 0909, 103 (2009) ADSCrossRefGoogle Scholar
  44. 44.
    C.P. Burgess, H.M. Lee, M. Trott, J. High Energy Phys. 1007, 007 (2010) ADSCrossRefGoogle Scholar
  45. 45.
    J.L.F. Barbon, J.R. Espinosa, Phys. Rev. D 79, 081302 (2009) ADSCrossRefGoogle Scholar
  46. 46.
    R.N. Lerner, J. McDonald, Phys. Rev. D 82, 103525 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    G.F. Giudice, H.M. Lee, Phys. Lett. B 694, 294 (2011) ADSCrossRefGoogle Scholar
  48. 48.
    M.P. Hertzberg, arXiv:1110.5650 [hep-ph]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.DESY Theory GroupHamburgGermany

Personalised recommendations