Advertisement

Conformal linear gravity in de Sitter space II

  • M. V. Takook
  • H. Pejhan
  • M. Reza TanhayiEmail author
Regular Article - Theoretical Physics

Abstract

From the group theoretical point of view, it is proved that the theory of linear conformal gravity should be written in terms of a tensor field of rank-3 and mixed symmetry (Binegar et al. in Phys. Rev. D 27:2249, 1983). We obtained such a field equation in de Sitter space (Takook et al. in J. Math. Phys. 51:032503, 2010). In this paper, a proper solution to this equation is obtained as a product of a generalized polarization tensor and a massless scalar field and then the conformally invariant two-point function is calculated. This two-point function is de Sitter invariant and free of any pathological large-distance behavior.

Keywords

Tensor Field Conformal Group Krein Space Massless Scalar Field Intrinsic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank S. Ardeshirzade and E. Ariamand for their collaboration in the early stage of this work. One of us, MRT, is grateful to S. Fatemi for her useful comments.

References

  1. 1.
    B. Binegar, C. Fronsdal, W. Heidenreich, Phys. Rev. D 27, 2249 (1983) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    M.V. Takook, M.R. Tanhayi, S. Fatemi, J. Math. Phys. 51, 032503 (2010). arXiv:0903.5249v1 MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H. Bateman, Proc. Lond. Math. Soc. 7, 70 (1909) MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Cunningham, Proc. Lond. Math. Soc. 8, 77 (1909) MathSciNetCrossRefGoogle Scholar
  5. 5.
    P.A.M. Dirac, Ann. Math. 37, 429 (1936) MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. McLennan, Nuovo Cimento 3, 1360 (1956) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J.S. Lomont, Nuovo Cimento 22, 673 (1961) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A.O. Barut, A. Böhm, J. Math. Phys. 11, 2938 (1970) ADSCrossRefGoogle Scholar
  9. 9.
    E. Angelopoulos, M. Laoues, Rev. Math. Phys. 10, 271 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    B. Allen, M. Turyn, Nucl. Phys. B 292, 813 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    E.G. Floratos, J. Iliopoulos, T.N. Tomaras, Phys. Lett. B 197, 373 (1987) ADSCrossRefGoogle Scholar
  12. 12.
    I. Antoniadis, E. Mottola, J. Math. Phys. 32, 1037 (1991) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    H.L. Ford, Phys. Rev. D 31, 710 (1985) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Phys. Rev. Lett. 56, 1319 (1986) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    N.C. Tsamis, R.P. Woodard, Phys. Lett. B 292, 269 (1992) ADSCrossRefGoogle Scholar
  16. 16.
    N.C. Tsamis, R.P. Woodard, Commun. Math. Phys. 162, 217 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    I. Antoniadis, J. Iliopoulos, T.N. Tomaras, Nucl. Phys. B 462, 437 (1996) MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Higuchi, S.S. Kouris, Class. Quantum Gravity 17, 3077 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    A. Higuchi, S.S. Kouris, Class. Quantum Gravity 20, 3005 (2003) ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    H.J. de Vega, J. Ramirez, N. Sanchez, Phys. Rev. D 60, 044007 (1999) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    S.W. Hawking, T. Hertog, N. Turok, Phys. Rev. D 62, 063502 (2000) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M.V. Takook, in Proceeding of the Wigsym6, Istanbul, Turkey, August 1999 Google Scholar
  23. 23.
    M.V. Takook, Int. Proc. J.. 3(1), 1–8 (2009) Google Scholar
  24. 24.
    M. Dehghani, S. Rouhani, M.V. Takook, M.R. Tanhayi, Phys. Rev. D 77, 064028 (2008) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    B. Allen, B. Folacci, Phys. Rev. D 35, 3771 (1987) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    J.P. Gazeau, J. Renaud, M.V. Takook, Class. Quantum Gravity 17, 1415 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    A.G. Riess et al. (Supernova Search Team Collaboration), Astrophys. J. 116, 1009 (1998) Google Scholar
  28. 28.
    S. Perlmutter et al. (Supernova Cosmology Project Collaboration), Astrophys. J. 517, 567 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    U. Seljak, A. Slosar, P. McDonald, J. Cosmol. Astropart. Phys. 014, 610 (2006) Google Scholar
  30. 30.
    A.G. Riess et al., Astrophys. J. 98, 659 (2007) Google Scholar
  31. 31.
    A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, Chur, 1990) Google Scholar
  32. 32.
    P. Perlmutter et al., Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    A. Jaros, M.E. Peskin, Int. J. Mod. Phys. A 715, 1581 (2000) Google Scholar
  34. 34.
    J.P. Gazeau, M. Hans, J. Math. Phys. 29, 2533 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Levy-Nahas, J. Math. Phys. 8, 1211 (1967) MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    H. Bacry, J.M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968) MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    P.A.M. Dirac, Ann. Math. 36, 657 (1935) MathSciNetCrossRefGoogle Scholar
  38. 38.
    G. Mack, A. Salam, Ann. Phys. 53, 174 (1969) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    H.A. Kastrup, Phys. Rev. 150, 1189 (1964) Google Scholar
  40. 40.
    C.R. Preitschop, M.A. Vosiliev, Nucl. Phys. B 549, 450 (1999) ADSCrossRefGoogle Scholar
  41. 41.
    S. Behroozi, S. Rouhani, M.V. Takook, M.R. Tanhayi, Phys. Rev. D 74, 124014 (2006) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    T. Garidi, J.P. Gazeau, M.V. Takook, J. Math. Phys. 44, 3838 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    T. Garidi, J.P. Gazeau, S. Rouhani, M.V. Takook, J. Math. Phys. 49, 032501 (2008). arXiv:gr-qc/0608004 MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    J.P. Gazeau, M.V. Takook, J. Math. Phys. 41, 5920 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    J. Bros, J.P. Gazeau, U. Moschella, Phys. Rev. Lett. 73, 1746 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. 46.
    J. Bros, U. Moschella, Rev. Math. Phys. 8, 327 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    B. Allen, T. Jacobson, Commun. Math. Phys. 103, 669 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. 48.
    A. Folacci, J. Math. Phys. 32, 2828 (1991) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    M.V. Takook, Mod. Phys. Lett. A 16, 1691 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    N.A. Chernikov, E.A. Tagirov, Ann. Inst. Henri Poincaré IX, 109 (1968) MathSciNetGoogle Scholar
  51. 51.
    M.V. Takook, M.R. Tanhayi, J. High Energy Phys. 1012, 044 (2010) MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    K.S. Stelle, Phys. Rev. D 16, 953 (1977) MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    E.S. Fradkin, A.A. Tseytlin, Nucl. Phys. B 201, 469 (1982) MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    C.M. Bender, P.D. Mannheim, Phys. Rev. Lett. 100, 110402 (2008) ADSCrossRefGoogle Scholar
  55. 55.
    C.M. Bender, P.D. Mannheim, Phys. Rev. D 78, 025022 (2008) MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. 57.
    D.C. Rodrigues, Phys. Rev. D 77, 023534 (2008) ADSCrossRefGoogle Scholar
  58. 58.
    M.V. Takook, H. Pejhan, M. Tanhayi-Ahari, M.R. Tanhayi, Casimir effect for a scalar field via Krein quantization. arXiv:1204.6001
  59. 59.
    J. Dixmier, Bull. Soc. Math. Fr. 89, 9 (1961) MathSciNetzbMATHGoogle Scholar
  60. 60.
    B. Takahashi, Bull. Soc. Math. Fr. 91, 289 (1963) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Physics, Central Tehran BranchIslamic Azad UniversityTehranIran

Personalised recommendations