Model-independent extraction of |V tq | matrix elements from top-quark measurements at hadron colliders

  • H. LackerEmail author
  • A. Menzel
  • F. Spettel
  • D. Hirschbühl
  • J. Lück
  • F. Maltoni
  • W. Wagner
  • M. Zaro
Regular Article - Theoretical Physics


Current methods to extract the quark-mixing matrix element |V tb | from single-top-production measurements assume that |V tb |≫|V td |,|V ts |: top quarks decay into b quarks with 100 % branching fraction, s-channel single-top production is always accompanied by a b quark and initial-state contributions from d and s quarks in the t-channel production of single top quarks are neglected. Triggered by a recent measurement of the ratio \(R=\frac{|V_{tb}|^{2}}{|V_{td}|^{2}+|V_{ts}|^{2}+|V_{tb}|^{2}}=0.90 \pm 0.04\) performed by the D0 collaboration, we consider a |V tb | extraction method that takes into account non zero d- and s-quark contributions both in production and decay. We propose a strategy that allows to extract consistently and in a model-independent way the quark-mixing matrix elements |V td |, |V ts |, and |V tb | from the measurement of R and from single-top measured event yields. As an illustration, we apply our method to the Tevatron data using a CDF analysis of the measured single-top event yield with two jets in the final state, one of which is identified as a b-quark jet. We constrain the |V tq | matrix elements within a four-generation scenario by combining the results with those obtained from direct measurements in flavor physics and determine the preferred range for the top-quark decay width within different scenarios.


Parton Density Function Heavy Flavor Average Group Fourth Generation Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been performed using the CKMfitter package. We are grateful for the support provided by the CKMfitter group. We would like to thank J. Wagner-Kuhr for useful discussions. F.M. would like to thank Jean-Marc Gérard for many useful discussions. A.M. is funded by the German Science Foundation (DFG). F.M. and M.Z. are funded by the Belgian Federal Office for Scientific, Technical and Cultural Affairs through Interuniversity Pole No. P6/11.


  1. 1.
    N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963) ADSCrossRefGoogle Scholar
  2. 2.
    M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973) ADSCrossRefGoogle Scholar
  3. 3.
    J. Charles et al. (The CKMfitter Group), Eur. Phys. J. C 41, 1 (2005). Updated at ADSCrossRefGoogle Scholar
  4. 4.
    J. Charles et al. (The CKMfitter Group), Phys. Rev. D 84, 033005 (2011). arXiv:1106.4041 [hep-ph] ADSCrossRefGoogle Scholar
  5. 5.
    J. Alwall et al., Eur. Phys. J. C 49, 791 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 192003 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 107, 121802 (2011). arXiv:1106.5436 [hep-exp] ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Chanowitz, Phys. Rev. D 82, 035018 (2010). arXiv:1007.0043 [hep-ph] ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Chanowitz, Phys. Rev. D 79, 113008 (2009). arXiv:0904.3570 [hep-ph] ADSCrossRefGoogle Scholar
  10. 10.
    O. Eberhardt, A. Lenz, J. Rohrwild, Phys. Rev. D 82, 095006 (2010). arXiv:1005.3505 [hep-ph] ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Alok, A. Dighe, D. London, Phys. Rev. D 83, 073008 (2011). arXiv:1011.2634 [hep-ph] ADSCrossRefGoogle Scholar
  12. 12.
    A. Lister (CDF Collaboration), Search for heavy top-like quarks t′→Wq using lepton plus jets events in 1.96 TeV p pbar collisions. arXiv:0810.3349 [hep-ex]
  13. 13.
    J. Conway (CDF Collaboration), CDF public conference note CDF/PUB/TOP/PUBLIC/10110 Google Scholar
  14. 14.
    The ATLAS Collaboration, Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at sqrt(s) = 7 TeV with the ATLAS detector. arXiv:1202.3389 [hep-ex]
  15. 15.
    The ATLAS Collaboration, Search for pair production of a heavy quark decaying to a W boson and a b quark in the lepton + jets channel with the ATLAS detector. arXiv:1202.3076 [hep-ex]
  16. 16.
    The ATLAS Collaboration, Search for fourth generation quarks decaying to \(W^{+} q W^{-} \bar{q} \rightarrow l^{+} l^{-} \nu \bar{\nu} q \bar{q}\) in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\) with the ATLAS detector. ATLAS-CONF-2011-022 Google Scholar
  17. 17.
    The CMS Collaboration, Search for a heavy top-like quark in the dilepton final state in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\). CMS-PAS-EXO-11-050 Google Scholar
  18. 18.
    The CMS Collaboration, Search for t′ pair production in lepton + jets channel. CMS-PAS-EXO-11-051 Google Scholar
  19. 19.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 091801 (2010). arXiv:0912.1057 [hep-ex] ADSCrossRefGoogle Scholar
  20. 20.
    T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. Lett. 106, 141803 (2011). arXiv:1101.5728 [hep-ex] ADSCrossRefGoogle Scholar
  21. 21.
    G. Aad et al. (ATLAS Collaboration), Inclusive search for same-sign dilepton signatures in pp collisions at \(\sqrt{s} = 7~\mathrm{TeV}\) with the ATLAS detector. arXiv:1108.0366 [hep-ex]
  22. 22.
    The CMS Collaboration, Search for a heavy bottom-like quark in pp collisions at \(\sqrt{s} = 7~\mbox{TeV}\). CMS-PAS-EXO-11-036 Google Scholar
  23. 23.
    The CMS Collaboration, Inclusive search for a fourth generation of quarks with the CMS experiment. CMS-PAS-EXO-11-054 Google Scholar
  24. 24.
    B.W. Harris et al., Phys. Rev. D 66, 054024 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    J. Campbell, K. Ellis, F. Tramontano, Phys. Rev. D 70, 094012 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    N. Kidonakis, Phys. Rev. D 81, 054028 (2010). arXiv:1001.5034 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, J. High Energy Phys. 0910, 042 (2009). arXiv:0907.3933 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 102, 182003 (2009). arXiv:0903.0005 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001). arXiv:hep-ph/0010017 ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    P. Nason, J. High Energy Phys. 0411, 040 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, J. High Energy Phys. 0603, 092 (2006). arXiv:hep-ph/0512250 ADSCrossRefGoogle Scholar
  33. 33.
    S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 0909, 111 (2009). arXiv:0907.4076 [hep-ph] ADSCrossRefGoogle Scholar
  34. 34.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    J. Campbell, K. Ellis, MCFM—Monte Carlo for FeMtobarn processes.
  36. 36.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph] ADSCrossRefGoogle Scholar
  37. 37.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 [hep-ex] ADSCrossRefGoogle Scholar
  38. 38.
    T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 82, 112005 (2010). arXiv:1004.1181 [hep-ex] ADSCrossRefGoogle Scholar
  39. 39.
    H. Lacker, A. Menzel, J. High Energy Phys. 1007, 006 (2010). arXiv:1003.4532 [hep-ph] ADSCrossRefGoogle Scholar
  40. 40.
    J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009) ADSCrossRefGoogle Scholar
  41. 41.
    M. Antonelli et al., Eur. Phys. J. C 69, 399 (2010). arXiv:1005.2323 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
    A. Lenz et al., Phys. Rev. D 83, 036004 (2011). arXiv:1008.1593 [hep-ph] ADSCrossRefGoogle Scholar
  43. 43.
    E. Barberio et al. (Heavy Flavour Averaging Group), arXiv:0808.1297 [hep-ex] and online update at updated for PDG 2009
  44. 44.
    The LEP Collaborations: ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, the LEP Electroweak Working Group, A combination of preliminary electroweak measurements and constraints on the standard model. arXiv:hep-ex/0612034v2
  45. 45.
    V.M. Abazov et al. (D0 Collaboration), An improved determination of the width of the top quark. arXiv:1201.4156 [hep-ex]
  46. 46.
    V.M. Abazov et al. (D0 Collaboration), Measurements of single top quark production cross sections and |V tb| in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96~\mathrm{TeV}\). arXiv:1108.3091 [hep-ex]
  47. 47.
    The ATLAS Collaboration, Measurement of the t-channel single-top production cross section in 0.7 fb−1 of pp collisions at \(\sqrt{s}=7~\mbox{TeV}\) collected with the ATLAS detector. ATLAS-CONF-2011-101 Google Scholar
  48. 48.
    The CMS Collaboration, Measurement of t-channel single-top cross section in pp collisions at \(\sqrt{s}=7~\mathrm{TeV}\). CMS PAS TOP-10-008 Google Scholar
  49. 49.
    M. Jezabek, J.H. Kühn, Nucl. Phys. B 314, 1 (1989) ADSCrossRefGoogle Scholar
  50. 50.
    U. Langenfeld, S.-O. Moch, P. Uwer, in PoS ICHEP2010 (2010), 082 Google Scholar
  51. 51.
    J.A. Aguilar-Saavedra, A. Onofre, Phys. Rev. D 83, 073003 (2011). arXiv:1002.4718 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • H. Lacker
    • 1
    Email author
  • A. Menzel
    • 1
  • F. Spettel
    • 1
  • D. Hirschbühl
    • 2
  • J. Lück
    • 3
  • F. Maltoni
    • 4
  • W. Wagner
    • 2
  • M. Zaro
    • 4
  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Fachbereich C—Experimentelle ElementarteilchenphysikBergische Universität WuppertalWuppertalGermany
  3. 3.Institut für Experimentelle KernphysikKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations