Advertisement

Covariant quantization of “massive” spin-\(\frac{3}{2}\) fields in the de sitter space

  • M. V. TakookEmail author
  • A. Azizi
  • E. Babaian
Regular Article - Theoretical Physics

Abstract

We present a covariant quantization of the free “massive” spin-\(\frac{3}{2}\) fields in four-dimensional de Sitter space-time based on analyticity in the complexified pseudo-Riemannian manifold. The field equation is obtained as an eigenvalue equation of the Casimir operator of the de Sitter group. The solutions are calculated in terms of coordinate-independent de Sitter plane-waves in tube domains and the null curvature limit is discussed. We give the group theoretical content of the field equation. The Wightman two-point function \(S^{i \bar{j}}_{\alpha\alpha'}(x,x')\) is calculated. We introduce the spinor-vector field operator Ψ α (f) and the Hilbert space structure. A coordinate-independent formula for the field operator Ψ α (x) is also presented.

Keywords

Field Equation Spinor Field Discrete Series Casimir Operator Principal Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank S. Rouhani, M.R. Tanhai and T. Parvizi for their interest in this work. We also thank the referees for their useful comments and suggestions.

References

  1. 1.
    N.A. Chernikov, E.A. Tagirov, Ann. Inst. Henri Poincaré, IX, 109 (1968) MathSciNetGoogle Scholar
  2. 2.
    F. Gursey, T.D. Lee, Physics 49, 179 (1963) MathSciNetGoogle Scholar
  3. 3.
    B. Allen, T. Jacobson, Commun. Math. Phys. 103, 669 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    J. Bros, J.P. Gazeau, U. Moschella, Phys. Rev. Lett. 73, 1746 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    B. Bros, U. Moschella, Rev. Math. Phys. 8, 327 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    J.P. Gazeau, M.V. Takook, J. Math. Phys. 41, 5920 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    T. Garidi, J.P. Gazeau, S. Rouhani, M.V. Takook, J. Math. Phys. 49, 032501 (2008) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M.V. Takook, Thèse de l’Université Paris VI (1997) Google Scholar
  9. 9.
    C. Gabriel, P. Spindel, J. Math. Phys. 38, 622 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    T. Garidi, J.P. Gazeau, M.V. Takook, J. Math. Phys. 44, 3838 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    M.V. Takook, Iran. Phys. J. 3, 1 (2009) Google Scholar
  12. 12.
    M.V. Takook, In: Proceedings of the Sixth International Wigner Symposium, 16–22 August 1999, vol. 1 (Bogaziçi university Press, Istanbul, 1999). gr-qc/0001052 Google Scholar
  13. 13.
    M. Dehghani, S. Rouhani, M.V. Takook, M.R. Tanhayi, Phys. Rev. D 77, 064028 (2008) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    E. Angelopoulos, M. Laoues, Rev. Math. Phys. 10, 1079 (1998) MathSciNetCrossRefGoogle Scholar
  15. 15.
    P. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    L. Anguelova, P. Langfelder, J. High Energy Phys. 0303, 057 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    W. Rarita, J. Schwinger, Phys. Rev. 60, 61 (1941) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    G.F. Torres del Castillo, A.H. Morales, Int. J. Theor. Phys. 35, 569 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    H. Yu, P. Wu, Phys. Rev. D 69, 064008 (2004) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    A. Basu, L. Uruchurtu, Class. Quantum Gravity 23, 6059 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    P.A.M. Dirac, Ann. Math. 36, 657 (1935) MathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Allen, Phys. Rev. D 32, 3136 (1985) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    C. Schomblond, P. Spindel, Acad. R. Belg. Class. Sci. LXII, 124 (1976) MathSciNetGoogle Scholar
  24. 24.
    P. Bartesaghi, J.P. Gazeau, U. Moschella, M.V. Takook, Class. Quantum Gravity 18, 4373 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    S. Molchanov, Dokl. Math. 7, 1553 (1966) zbMATHGoogle Scholar
  26. 26.
    I.S. Shapiro, Dokl. Akad. Nauk SSSR 106, 647 (1956) MathSciNetzbMATHGoogle Scholar
  27. 27.
    I.S. Shapiro, Phys. Lett. 1, 253 (1962) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    N.Ya. Vilenkin, Ya.A. Smorodinsky, J. Exp. Theor. Phys. 46, 1793 (1964) Google Scholar
  29. 29.
    I.M. Gelfand, M.I. Graev, N.Y. Vilenkin, Integral Geometry and Representation Theory (Moscow, 1962) Google Scholar
  30. 30.
    I.P. Volobuev, Theor. Math. Phys. 45, 1119 (1980) MathSciNetCrossRefGoogle Scholar
  31. 31.
    E.M. Bychkovskaya, N.G. Tokarevskaya, V.M. Red’kov, Nonlinear Phenom. Complex Syst. 12, 1 (2009) MathSciNetzbMATHGoogle Scholar
  32. 32.
    E.M. Ovsiyuk, Simulating of a special medium. arXiv:1203.4288v1
  33. 33.
    G. Börner, H.P. Dürr, Il Nuovo Cimento LXIV, 669 (1969) Google Scholar
  34. 34.
    J.P. Gazeau, J. Math. Phys. 26, 1847 (1985) MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    M.V. Takook, In: Proceeding of the Group 21, 15–20 July (1996). gr-qc/0005077 Google Scholar
  36. 36.
    M. Lesimple, Lett. Math. Phys. 15, 143 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    B. Takahashi, Bull. Soc. Math. Fr. 91, 289 (1963) zbMATHGoogle Scholar
  38. 38.
    J. Dixmier, Bull. Soc. Math. Fr. 89, 9 (1961) MathSciNetzbMATHGoogle Scholar
  39. 39.
    M. Levy-Nahas, J. Math. Phys. 8, 1211 (1967) MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    H. Bacry, J.M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968) MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    A.O. Barut, A. Böhm, J. Math. Phys. 11, 2938 (1970) ADSCrossRefGoogle Scholar
  42. 42.
    C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980) Google Scholar
  43. 43.
    I.M. Gel’fand, E.G. Shilov, Generalized Functions (Academic Press, San Diego, 1964) zbMATHGoogle Scholar
  44. 44.
    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics and All That (Benjamin, New York, 1964) zbMATHGoogle Scholar
  45. 45.
    N.N. Bogolubov et al., General Principles of Quantum Field Theory (Kluwer Academic, Norwell, 1987) Google Scholar
  46. 46.
    V.M. Red’kov, Particle with spin S=3/2 in Riemannian space-time. arXiv:1109.3871v1
  47. 47.
    M.V. Takook, A. Azizi, “Massless” Spin-\(\frac{3}{2}\) Fields in de Sitter Space-time (in preparation) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran
  2. 2.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations