Advertisement

f(T) cosmology via Noether symmetry

  • K. AtazadehEmail author
  • F. Darabi
Regular Article - Theoretical Physics

Abstract

We consider the Noether symmetry approach to find exact cosmological solutions in f(T)-gravity. Instead of taking into account phenomenological models, we apply the Noether symmetry to f(T) gravity. As a result, the presence of such symmetries selects viable models and allows one to solve the equations of motion. We show that the generated f(T) leads to a power law expansion for the cosmological scale factor.

Keywords

Dark Energy Friedmann Equation Point Transformation Gravitational Field Equation Torsion Scalar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work has been supported financially by Research Institute for Astronomy and Astrophysics of Maragha (RIAAM) under research project No. 1/2361.

References

  1. 1.
    S. Perlmutter et al. (SNCP Collaboration), Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  2. 2.
    A.G. Riess et al. (SNST Collaboration), Astron. J. 116, 1009 (1998) CrossRefADSGoogle Scholar
  3. 3.
    D.N. Spergel et al. (WMAP Collaboration), Astrophys. J. Suppl. 148, 175 (2003) CrossRefADSGoogle Scholar
  4. 4.
    E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. 192, 18 (2011) CrossRefADSGoogle Scholar
  5. 5.
    M. Tegmark et al., Phys. Rev. D 69, 103501 (2004) CrossRefADSGoogle Scholar
  6. 6.
    D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005) CrossRefADSGoogle Scholar
  7. 7.
    B. Jain, A. Taylor, Phys. Rev. Lett. 91, 141302 (2003) CrossRefADSGoogle Scholar
  8. 8.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006) MathSciNetzbMATHCrossRefADSGoogle Scholar
  9. 9.
    M. Li, X.D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011). arXiv:1103.5870 CrossRefADSGoogle Scholar
  10. 10.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) ADSGoogle Scholar
  11. 11.
    T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, arXiv:1106.2476
  12. 12.
    R. Weitzenböck, Invarianten Theorie (Noordhoff, Groningen, 1923) Google Scholar
  13. 13.
    F.W. Hehl, P. Von Der Heyde, G.D. Kerlick, J.M. Nester, Rev. Mod. Phys. 48, 393 (1976) CrossRefADSGoogle Scholar
  14. 14.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., 217 (1928) Google Scholar
  15. 15.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., 401 (1930) Google Scholar
  16. 16.
    G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009) CrossRefADSGoogle Scholar
  17. 17.
    R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007) MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    S.H. Chen, J.B. Dent, S. Dutta, E.N. Saridakis, Phys. Rev. D 83, 023508 (2011) CrossRefADSGoogle Scholar
  19. 19.
    P. Wu, H.W. Yu, Eur. Phys. J. C 71, 1552 (2011) CrossRefADSGoogle Scholar
  20. 20.
    J.B. Dent, S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 1101, 009 (2011) CrossRefADSGoogle Scholar
  21. 21.
    T. Wang, Phys. Rev. D 84, 024042 (2011) CrossRefADSGoogle Scholar
  22. 22.
    B. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011) CrossRefADSGoogle Scholar
  23. 23.
    R. Aldrovandi, J.G. Pereira, An Introduction to Teleparallel Gravity, unpublished course notes. www.ift.unesp.br/gcg/tele.pdf
  24. 24.
    J.C.C. de Souza, V. Faraoni, Class. Quantum Gravity 24, 3637 (2007). arXiv:0706.1223 zbMATHCrossRefADSGoogle Scholar
  25. 25.
    M. Demianski, R. de Ritis, C. Rubano, P. Scudellaro, Phys. Rev. D 46, 1391 (1992) MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    B. Vakili, Phys. Lett. B 669, 206 (2008). arXiv:0809.4591 MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    S. Capozziello, A. De Felice, J. Cosmol. Astropart. Phys. 0808, 016 (2008) CrossRefADSGoogle Scholar
  28. 28.
    B. Vakili, N. Khosravi, H.R. Sepangi, Class. Quantum Gravity 24, 931 (2007). arXiv:gr-qc/0701075 MathSciNetzbMATHCrossRefADSGoogle Scholar
  29. 29.
    E.V. Linder, A. Jenkins, Mon. Not. R. Astron. Soc. 346, 573 (2003). arXiv:astro-ph/0305286 CrossRefADSGoogle Scholar
  30. 30.
    L.M. Krauss, B. Chaboyer, Science 299, 65 (2003) CrossRefADSGoogle Scholar
  31. 31.
    H. Wei, X.-J. Guo, L.-F. Wang, Phys. Lett. B 707, 298 (2012). arXiv:1112.2270 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsAzarbaijan University of Tarbiat MoallemTabrizIran
  2. 2.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations