Advertisement

Black hole spectroscopy via adiabatic invariant in a quantum corrected spacetime

  • Cheng-Zhou LiuEmail author
Regular Article - Theoretical Physics

Abstract

Using the modified Kunstatter method, which employs as proper frequency the imaginary part instead of the real part of the quasinormal modes, the entropy spectrum and area spectrum of the modified Schwarzschild black holes in gravity’s rainbow are investigated. In the current study, two cases of modified dispersion relations concerning energy dependent and energy independent speed of light are considered. The entropy spectra with equal spacing are derived in these two cases. Furthermore, the obtained entropy spectra are independent of the energy of a test particle and are the same as the one of the usual Schwarzschild black hole. Also, the same area spectrum formulas are obtained in these different dispersion relations. However, due to the quantum effect of spacetime, the obtained area spectra are not equally spaced and are different from the one of the usual Schwarzschild black hole. Besides, in these two cases, the same black hole entropy formulas with logarithmic correction to the standard Bekenstein–Hawking area formula are obtained by the adiabatic invariant. The form of area spacing formulas and entropy formulas are independent of the particle’s energy, but the area spacing and entropy can have energy dependence through the area.

Keywords

Black Hole Black Hole Entropy Area Spectrum Area Spacing Entropy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would like to thank Prof. Y. Lin for helpful discussions. Also, I would like to thank the referees for helpful comments and advices. The work was supported by the National Natural Science Foundation of China (No. 11045005) and the Natural Science Foundation of Zhejiang Province of China (No. Y6090739).

References

  1. 1.
    J.D. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972) CrossRefADSGoogle Scholar
  2. 2.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973) MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974) CrossRefADSGoogle Scholar
  4. 4.
    J.D. Bekenstein, arXiv:gr-qc/9710076
  5. 5.
    J.D. Bekenstein, arXiv:gr-qc/9808028
  6. 6.
    S. Hod, Phys. Rev. Lett. 81, 4239 (1998). arXiv:gr-qc/9812002 MathSciNetGoogle Scholar
  7. 7.
    S. Hod, Phys. Rev. D 59, 024014 (1998). arXiv:gr-qc/9906004 MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003). arXiv:gr-qc/0212014 MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008). arXiv:0711.3145 MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    E.C. Vagenas, J. High Energy Phys. 0811, 073 (2008). arXiv:0804.3264 MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    A.J.M. Medved, Class. Quantum Gravity 25, 205014 (2008). arXiv:0804.4346 MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    K. Ropotenko, Phys. Rev. D 82, 044037 (2010). arXiv:0911.5635 CrossRefADSGoogle Scholar
  13. 13.
    S. Wei, R. Li, Y. Liu, J. Ren, J. High Energy Phys. 03, 076 (2009). arXiv:0901.0587 MathSciNetGoogle Scholar
  14. 14.
    D. Kothawala, T. Padmanabhan, S. Sarkar, Phys. Rev. D 78, 104018 (2008). arXiv:0807.1481 MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    W.B. Li, L.X. Xu, J.B. Lu, Phys. Lett. B 676, 177 (2009) MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    B.R. Majhi, Phys. Lett. B 686, 49 (2010). arXiv:0911.3239 MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J.L. Jing, C.K. Ding, Chin. Phys. Lett. 25, 858 (2008) MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    B. Wang, C.Y. Lin, C. Molina, Phys. Rev. D 70, 064025 (2004). arXiv:hep-th/0407024 MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    S.W. Wei, Y.X. Liu, arXiv:0906.0908
  20. 20.
    S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Phys. Rev. D 81, 104042 (2010). arXiv:1002.1553 CrossRefADSGoogle Scholar
  21. 21.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010). arXiv:0907.4271 CrossRefADSGoogle Scholar
  22. 22.
    J. Louko, J. Makela, Phys. Rev. D 54, 4982 (1996). arXiv:gr-qc/9605058 MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    V.F. Mukhanov, JETP Lett. 44, 63 (1986) MathSciNetADSGoogle Scholar
  24. 24.
    A. Barvinsky, S. Das, G. Kunstatter, Class. Quantum Gravity 18, 4845 (2001). arXiv:gr-qc/0012066 MathSciNetzbMATHCrossRefADSGoogle Scholar
  25. 25.
    A. Barvinsky, S. Das, G. Kunstatter, Phys. Lett. B 517, 415 (2001). arXiv:hep-th/0102061 MathSciNetzbMATHCrossRefADSGoogle Scholar
  26. 26.
    A. Barvinsky, S. Das, G. Kunstatter, Found. Phys. 32, 1851 (2002). arXiv:hep-th/0209039 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Y. Kwon, S. Nam, Class. Quantum Gravity 27, 125007 (2010). arXiv:1001.5106 MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    B.R. Majhi, E.C. Vagenas, Phys. Lett. B 701, 623 (2011). arXiv:1106.2292 CrossRefADSGoogle Scholar
  29. 29.
    H.P. Nollert, Class. Quantum Gravity 16, R159 (1999) MathSciNetzbMATHCrossRefADSGoogle Scholar
  30. 30.
    D. Kimberly, J. Magueijo, J. Medeiros, Phys. Rev. D 70, 084007 (2004). arXiv:gr-qc/0303067 MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    J. Magueijo, L. Smolin, Class. Quantum Gravity 21, 1725 (2004). arXiv:gr-qc/0305055 MathSciNetzbMATHCrossRefADSGoogle Scholar
  32. 32.
    J. Hackett, Class. Quantum Gravity 23, 3833 (2006) MathSciNetzbMATHCrossRefADSGoogle Scholar
  33. 33.
    F. Girelli, S. Liberati, L. Sindoni, Phys. Rev. D 75, 064015 (2007). arXiv:gr-qc/0611024 MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Y. Ling, X. Li, B. Hu, Mod. Phys. Lett. A 22, 2749 (2007). arXiv:gr-qc/0512084 zbMATHCrossRefADSGoogle Scholar
  35. 35.
    P. Galan, G.A. Mena Marugan, Phys. Rev. D 74, 044035 (2006). arXiv:gr-qc/0608061 MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    G. Garattnti, Phys. Lett. B 685, 329 (2010). arXiv:0902.3927 [gr-qc] MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    C.Z. Liu, J.Y. Zhu, Chin. Phys. B 18, 416 (2009). arXiv:gr-qc/0703058 MathSciNetADSGoogle Scholar
  38. 38.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051 MathSciNetzbMATHCrossRefADSGoogle Scholar
  39. 39.
    G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238 zbMATHCrossRefADSGoogle Scholar
  40. 40.
    J. Kowalski-Glikman, Phys. Lett. A 286, 391 (2001). arXiv:hep-th/0102098 MathSciNetzbMATHCrossRefADSGoogle Scholar
  41. 41.
    J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002). arXiv:hep-th/0112090 CrossRefADSGoogle Scholar
  42. 42.
    J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003). arXiv:gr-qc/0207085 MathSciNetCrossRefADSGoogle Scholar
  43. 43.
    C. Heuson, arXiv:gr-qc/0606124
  44. 44.
    P. Galan, G.A. Mena Marugan, Phys. Rev. D 70, 124003 (2004). arXiv:gr-qc/0411089 MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    P. Galan, G.A. Mena Marugan, Phys. Rev. D 72, 044019 (2005). arXiv:gr-qc/0507098 MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    S. Mignemi, Phys. Rev. D 68, 065029 (2003) MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    F. Hinterleitner, Phys. Rev. D 71, 025016 (2005) MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    R.J. Adler, P. Chen, D.I. Santiago, Gen. Relativ. Gravit. 33, 2101 (2001). arXiv:gr-qc/0106080 MathSciNetzbMATHCrossRefADSGoogle Scholar
  49. 49.
    P. Chen, R.J. Adler, Nucl. Phys. Proc. Suppl. 124, 103 (2003). arXiv:gr-qc/0205106 zbMATHCrossRefADSGoogle Scholar
  50. 50.
    Y. Ling, B. Hu, X. Li, Phys. Rev. D 73, 087702 (2006). arXiv:gr-qc/0512083 CrossRefADSGoogle Scholar
  51. 51.
    D.N. Page, New J. Phys. 7, 203 (2005). arXiv:hep-th/0409024 MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    A.J.M. Medved, E.C. Vagenas, Phys. Rev. D 70, 124021 (2004). arXiv:hep-th/0411022 MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of PhysicsShaoxing UniversityShaoxingChina

Personalised recommendations