Advertisement

Spectroscopy of a Reissner–Nordström black hole via an action variable

  • Xiao-Xiong Zeng
  • Wen-Biao LiuEmail author
Regular Article - Theoretical Physics

Abstract

With the help of the Bohr–Sommerfeld quantization rule, the area spectrum of a charged, spherically symmetric spacetime is obtained by studying an adiabatic invariant action variable. The period of the Einstein–Maxwell system, which is related to the surface gravity of a given spacetime, is determined by Kruskal-like coordinates. It is shown that the area spectrum of the Reissner–Nordström black hole is evenly spaced and the spacing is the same as that of a Schwarzschild black hole, which indicates that the area spectrum of a black hole is independent of its parameters. In contrast to quasi-normal mode analysis, we do not impose the small charge limit, as the general area gap 8π is obtained.

Keywords

Black Hole Event Horizon Quasinormal Mode Kerr Black Hole Horizon Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.W. Hawking, Nature 248, 30 (1974) ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974) ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Bekenstein, Quantum black holes as atoms. arXiv:gr-qc/9710076
  4. 4.
    J.D. Bekenstein, Black holes: classical properties, thermodynamics and heuristic quantization. arXiv:gr-qc/9808028
  5. 5.
    D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970) ADSCrossRefGoogle Scholar
  6. 6.
    J. Louko, J. Makela, Phys. Rev. D 54, 4982 (1996) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Makela, Phys. Lett. B 390, 115 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    A.D. Dolgov, I.B. Khriplovich, Phys. Lett. B 400, 12 (1997) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Y. Peleg, Phys. Lett. B 356, 462 (1995) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    H.A. Kastrup, Phys. Lett. B 385, 75 (1996) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    S. Hod, Phys. Rev. Lett. 81, 4293 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.D. Bekenstein, V.F. Mukhanov, Phys. Lett. B 360, 7 (1995) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A.J.M. Medved, Mod. Phys. Lett. A 24, 2601 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    K. Ropotenko, Phys. Rev. D 80, 044022 (2009) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    S. Wei, R. Li, Y. Liu, J.J. Ren, J. High Energy Phys. 03, 076 (2009) MathSciNetGoogle Scholar
  18. 18.
    A.J.M. Medved, Class. Quantum Gravity 25, 205014 (2008) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    E.C. Vagenas, J. High Energy Phys. 0811, 073 (2008) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S.W. Wei, Y.X. Liu, Area spectrum of the large AdS black hole from quasinormal modes. arXiv:0906.0908 [hep-th]
  21. 21.
    D.Y. Chen, H. Yang, X. Zu, Eur. Phys. J. C 69, 289 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    D. Kothawala, T. Padmanabhan, S. Sarkar, Phys. Rev. D 78, 104018 (2008) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Q.Q. Jiang, Y. Han, X. Cai, J. High Energy Phys. 1008, 049 (2010) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    B.R. Majhi, E.C. Vagenas, Phys. Lett. B 701, 623 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    A. Barvinsky, S. Das, G. Kunstatter, Class. Quantum Gravity 18, 4845 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    S. Hod, Class. Quantum Gravity 23, L23 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    S. Hod, Class. Quantum Gravity 24, 4871 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Phys. Rev. D 81, 104042 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    A. Lopez-Ortega, Class. Quantum Gravity 28, 035009 (2011) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    K. Umetsu, Phys. Lett. B 692, 61 (2010) MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    K. Umetsu, Int. J. Mod. Phys. A 25, 4123 (2010) MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    X.X. Zeng, S.Z. Yang, Chin. Phys. B 18, 462 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    X.X. Zeng, S.Z. Yang, D.Y. Chen, Chin. Phys. B 17, 1629 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    G.W. Gibbons, M.J. Perry, Proc. R. Soc. Lond. A 358, 467 (1978) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    L. Liu, S.Y. Pei, Chin. Phys. Lett. 21, 1887 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    R.M. Wald, The first law of black hole mechanics. arXiv:gr-qc/9305022
  40. 40.
    D. Sudarsky, R.M. Wald, Phys. Rev. D 46, 1453 (1992) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    S.J. Gao, Phys. Rev. D 68, 044016 (2003) MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    J. Zhang, Z. Zhao, J. High Energy Phys. 10, 055 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    J. Zhang, Z. Zhao, Phys. Lett. B 618, 14 (2005) MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    J. Zhang, Z. Zhao, Mod. Phys. Lett. A 20, 1673 (2005) ADSzbMATHCrossRefGoogle Scholar
  45. 45.
    J. Zhang, Z. Zhao, Nucl. Phys. B 725, 173 (2005) ADSzbMATHCrossRefGoogle Scholar
  46. 46.
    J. Zhang, Z. Zhao, Phys. Lett. B 638, 110 (2006) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Y.P. Hu, J.Y. Zhang, Z. Zhao, Mod. Phys. Lett. A 25, 295 (2010) ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    X.X. Zeng, Mod. Phys. Lett. A 24, 625 (2009) ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    S.W. Zhou, W.B. Liu, Mod. Phys. Lett. A 24, 2099 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    W.B. Liu, Phys. Lett. B 634, 541 (2006) MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    S.Z. Yang, Chin. Phys. Lett. 22, 2492 (2005) ADSCrossRefGoogle Scholar
  52. 52.
    X.X. Zeng, S.Z. Yang, Gen. Relativ. Gravit. 40, 2107 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    A.J.M. Medved, Yet more on the universal quantum area spectrum. arXiv:1005.2838 [gr-qc]
  54. 54.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Europhys. Lett. 92, 20001 (2010) ADSCrossRefGoogle Scholar
  55. 55.
    E.P. Verlinde, J. High Energy Phys. 1104, 029 (2011) MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Y. Kwon, S. Nam, Class. Quantum Gravity 27, 125007 (2010) MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. D 74, 044017 (2006) MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    K. Umetsu, Prog. Theor. Phys. 119, 849 (2008) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of Physics, Institute of Theoretical PhysicsBeijing Normal UniversityBeijingChina
  2. 2.Department of Physics and Engineering TechnologySichuan University of Arts and ScienceDazhouChina

Personalised recommendations