Sensitivity of LHC experiments to exotic highly ionising particles

  • A. De Roeck
  • A. Katre
  • P. Mermod
  • D. Milstead
  • T. Sloan
Open Access
Regular Article - Experimental Physics


The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they behave as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through either passive or active detectors and, in the case of magnetically charged objects, the so-called induction method with which magnetic monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.


Large Hadron Collider Magnetic Charge Magnetic Monopole Time Projection Chamber Forward Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Preskill, Magnetic monopoles. Annu. Rev. Nucl. Part. Sci. 34, 461 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Schwinger, Magnetic charge and quantum field theory. Phys. Rev. 144, 1087 (1966) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J.S. Schwinger, A magnetic model of matter. Science 165, 757 (1969) ADSCrossRefGoogle Scholar
  4. 4.
    A. Kusenko, M.E. Shaposhnikov, Supersymmetric Q-balls as dark matter. Phys. Lett. B 418, 46 (1998). arXiv:hep-ph/9709492 ADSCrossRefGoogle Scholar
  5. 5.
    B. Koch, M. Bleicher, H. Stoecker, Black holes at LHC? J. Phys. G 34, 535 (2007). arXiv:hep-ph/0702187v2 ADSCrossRefGoogle Scholar
  6. 6.
    P.A.M. Dirac, Quantised singularities in the electromagnetic field. Proc. R. Soc. A 133, 60 (1931) ADSCrossRefGoogle Scholar
  7. 7.
    P.A.M. Dirac, The theory of magnetic poles. Phys. Rev. 74, 817 (1948) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    D.E. Groom, In search of the supermassive magnetic monopole. Phys. Rep. 140, 323 (1986) ADSCrossRefGoogle Scholar
  9. 9.
    MACRO Collaboration, Final results of magnetic monopole searches with the MACRO experiment. Eur. Phys. J. C 25, 511 (2002). arXiv:hep-ex/0207020v2 ADSCrossRefGoogle Scholar
  10. 10.
    D.P. Hogan, D.Z. Besson, J.P. Ralston, I. Kravchenko, D. Seckel, Relativistic magnetic monopole flux constraints from RICE. Phys. Rev. D 78, 075031 (2008). arXiv:0806.2129 [astro-ph] ADSCrossRefGoogle Scholar
  11. 11.
    ANITA-II Collaboration, Ultra-relativistic magnetic monopole search with the ANITA-II balloon-borne radio interferometer. Phys. Rev. D 83, 023513 (2011). arXiv:1008.1282 [astro-ph] CrossRefGoogle Scholar
  12. 12.
    M. Fairbairn et al., Stable massive particles at colliders. Phys. Rep. 438, 1 (2007). arXiv:hep-ph/0611040 ADSCrossRefGoogle Scholar
  13. 13.
    D. Zwanziger, Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Phys. Rev. 176, 1480 (1968) ADSCrossRefGoogle Scholar
  14. 14.
    G. ’t Hooft, Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276 (1974) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W. Troost, P. Vinciarelli, Monopoles from dipoles, CERN-TH-2195 (1976) Google Scholar
  16. 16.
    Y.M. Cho, D. Maison, Monopole configuration in Weinberg–Salam model. Phys. Lett. B 391, 360 (1997) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Particle Data Group Collaboration, Review of particle physics. J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    S. Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Rev. Mod. Phys. 52, 121 (1980) ADSCrossRefGoogle Scholar
  19. 19.
    S. Ahlen, Stopping-power formula for magnetic monopoles. Phys. Rev. D 17, 229 (1978) ADSCrossRefGoogle Scholar
  20. 20.
    S. Ahlen, K. Kinoshita, Calculation of the stopping power of very-low-velocity magnetic monopoles. Phys. Rev. D 26, 2347 (1982) ADSCrossRefGoogle Scholar
  21. 21.
    T. Trikalinos, T. Terasawa, S. Ip, R. Gowri, J. Lau, Particle Beam Radiation Therapies for Cancer. Comparative Effectiveness Technical Briefs, vol. 1 (2009). Agency for Healthcare Research and Quality (US) Google Scholar
  22. 22.
    HERA Collaboration, A direct search for stable magnetic monopoles produced in positron-proton collisions at HERA. Eur. Phys. J. C 41, 133 (2005). arXiv:hep-ex/0501039 ADSCrossRefGoogle Scholar
  23. 23.
    ATLAS Collaboration, Search for massive long-lived highly ionising particles with the ATLAS detector at the LHC. Phys. Lett. B 698, 353 (2011). arXiv:1102.0459v3 [hep-ex] ADSCrossRefGoogle Scholar
  24. 24.
    TASSO Collaboration, A search for particles with magnetic charge produced in e + e annihilations at \(\sqrt{s}=35\) GeV. Z. Phys. C 38, 543 (1988) CrossRefGoogle Scholar
  25. 25.
    OPAL Collaboration, Search for Dirac magnetic monopoles in e + e collisions with the OPAL detector at LEP2. Phys. Lett. B 663, 37 (2008). arXiv:0707.0404v1 [hep-ex] ADSCrossRefGoogle Scholar
  26. 26.
    CDF Collaboration, Direct search for Dirac magnetic monopoles in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. Lett. 96, 201801 (2006). arXiv:hep-ex/0509015 CrossRefGoogle Scholar
  27. 27.
    S. Burdin, M. Horbatsch, W. Taylor, A correction to Birks’ Law in liquid argon ionization chamber simulations for highly ionizing particles. Nucl. Instrum. Methods A 664, 111 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    K. Kinoshita et al., Search for highly ionizing particles in e + e annihilations at \(\sqrt{s}=91.1\) GeV. Phys. Rev. D 46, 881–884 (1992) ADSCrossRefGoogle Scholar
  29. 29.
    J.L. Pinfold et al., A search for highly ionizing particles produced at the OPAL intersection point at LEP. Phys. Lett. B 316, 407 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    P.B. Price, G.-X. Ren, K. Kinoshita, Search for highly ionizing particles at the Fermilab proton anti-proton collider. Phys. Rev. Lett. 59, 2523 (1987) ADSCrossRefGoogle Scholar
  31. 31.
    P.B. Price, G.-R. Jing, K. Kinoshita, High luminosity search for highly ionizing particles at the Fermilab collider. Phys. Rev. Lett. 65, 149–152 (1990) ADSCrossRefGoogle Scholar
  32. 32.
    M. Bertani et al., Search for magnetic monopoles at the Tevatron collider. Europhys. Lett. 12, 613 (1990) ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Pinfold, Searching for the magnetic monopole and other highly ionizing particles at accelerators using nuclear track detectors. Radiat. Meas. 44, 834 (2009) CrossRefGoogle Scholar
  34. 34.
    MoEDAL Collaboration, Technical design report of the Moedal experiment, CERN-LHCC-2009-006; MOEDAL-TDR-001 (2009) Google Scholar
  35. 35.
    K.A. Milton, Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 69, 1637 (2006) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    G.R. Kalbfleisch, K.A. Milton, M.G. Strauss, L. Gamberg, E.H. Smith, W. Luo, Improved experimental limits on the production of magnetic monopoles. Phys. Rev. Lett. 85, 5292 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    G.R. Kalbfleisch, W. Luo, K.A. Milton, E.H. Smith, M.G. Strauss, Limits on production of magnetic monopoles utilizing samples from the D0 and CDF detectors at the Tevatron. Phys. Rev. D 69, 052002 (2004). arXiv:hep-ex/0306045 ADSCrossRefGoogle Scholar
  38. 38.
    D0 Collaboration, Search for heavy pointlike Dirac monopoles. Phys. Rev. Lett. 81, 524 (1998). arXiv:hep-ex/9803023v1 CrossRefGoogle Scholar
  39. 39.
    L.P. Gamberg, G.R. Kalbfleisch, K.A. Milton, Difficulties with photonic searches for magnetic monopoles. arXiv:hep-ph/9805365
  40. 40.
    ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008) CrossRefGoogle Scholar
  41. 41.
    CMS Collaboration, The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008) CrossRefGoogle Scholar
  42. 42.
    LHCb Collaboration, The LHCb detector at the LHC. J. Instrum. 2, S08005 (2008) CrossRefGoogle Scholar
  43. 43.
    ALICE Collaboration, The ALICE experiment at the CERN LHC. J. Instrum. 2, S08002 (2008) CrossRefGoogle Scholar
  44. 44.
    W.H. Smith, Triggering at LHC experiments. Nucl. Instrum. Methods A 478, 62 (2002) ADSCrossRefGoogle Scholar
  45. 45.
    R. Achenbach et al., The ATLAS Level-1 calorimeter trigger. J. Instrum. 3, P03001 (2008) CrossRefGoogle Scholar
  46. 46.
    CMS Collaboration, Search for heavy stable charged particles in pp collisions at sqrts=7 TeV, CMS PAS EXO-11-022 Google Scholar
  47. 47.
    ATLAS Collaboration, Search for heavy long-lived charged particles with the ATLAS detector in pp collisions at sqrt(s)=7 TeV. Phys. Lett. B 703, 428 (2011). arXiv:1106.4495 [hep-ex] ADSCrossRefGoogle Scholar
  48. 48.
    ALICE Collaboration, J/psi production as a function of charged particle multiplicity in pp collisions at sqrts=7 TeV. arXiv:1202.2816 [hep-ex]
  49. 49.
    MoEDAL collaboration, Website,, accessed February 2012
  50. 50.
    B. Gorini, Experiments expectations, plans and constraints. Talk at Chamonix workshop on LHC performance (2012) Google Scholar
  51. 51.
    T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175 ADSCrossRefGoogle Scholar
  52. 52.
    CERN program library,, accessed September 2011
  53. 53.
    ATLAS Collaboration, ATLAS insertable B-layer technical design report, CERN-LHCC-2010-013; ATLAS-TDR-019 (2010) Google Scholar
  54. 54.
    CMS Collaboration, Technical proposal for the upgrade of the CMS detector through 2020, CERN-LHCC-2011-006; CMS-UG-TP-1 (2011) Google Scholar
  55. 55.
    M. Garcia-Sciveres (ATLAS Collaboration), ATLAS experiment pixel detector upgrades. arXiv:1109.4662 [ins-det]
  56. 56.
    M. Nessi, A. Ball, R. Linder, W. Riegler, LHC experiments upgrade and maintenance: plans for LS1. Talk at Chamonix workshop on LHC performance (2012) Google Scholar
  57. 57.
    N. Parashar, CMS Collaboration, CMS pixel detector upgrade, arXiv:1110.2125 [ins-det]
  58. 58.
    P.H. Eberhard, R.R. Ross, L.W. Alvarez, R.D. Watt, Search for magnetic monopoles in lunar material. Phys. Rev. D 4, 3260 (1971) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • A. De Roeck
    • 1
    • 2
    • 3
  • A. Katre
    • 4
  • P. Mermod
    • 4
    • 5
  • D. Milstead
    • 6
  • T. Sloan
    • 7
  1. 1.CERNGenevaSwitzerland
  2. 2.Department of PhysicsUniversity of AntwerpAntwerpBelgium
  3. 3.Department of PhysicsUC-DavisDavisUSA
  4. 4.Département de Physique Nucléaire et CorpuculaireUniversity of GenevaGenevaSwitzerland
  5. 5.Department of PhysicsUniversity of OxfordOxfordUK
  6. 6.FysikumStockholm UniversityStockholmSweden
  7. 7.Department of PhysicsLancaster UniversityLancasterUK

Personalised recommendations